logo

Exploring the best fit: A comparative analysis of AFINN, Textblob, VADER, and Pattern on Arabic reviews for optimal dictionary extraction

Authors

  • Shakeel Ahmad

    Department of Computer Science, College of Computing and Information Technology in Rabigh (FCITR), King Abdulaziz University, Jeddah, Saudi Arabia
    Author
  • Sheikh Muhammad Saqib

    Department of Computing and Information Technology, Gomal University, Dera Ismail Khan, Pakistan
    Author
  • Asif Hassan Syed

    Department of Computer Science, College of Computing and Information Technology in Rabigh (FCITR), King Abdulaziz University, Jeddah, Saudi Arabia
    Author
  • Nashwan Alromema

    Department of Computer Science, College of Computing and Information Technology in Rabigh (FCITR), King Abdulaziz University, Jeddah, Saudi Arabia
    Author
  • Ali Kararay

    Department of Computer Science, College of Computing and Information Technology in Rabigh (FCITR), King Abdulaziz University, Jeddah, Saudi Arabia
    Author

DOI:

https://doi.org/10.22581/muet1982.3449

Keywords:

Natural Language Processing (NLP), Deep Learning, AFINN, Textblob, ADER, Pattern.en

Abstract

In the realm of natural language processing (NLP), the pivotal task of analysing affective states, including sentiment and emotion, has seen significant advancements in recent years. However, in the context of the Arabic language, studies predominantly resort to machine learning or deep learning algorithms for sentiment and emotion analysis, often neglecting the utilization of current pre-trained language models. While deep learning models tailored for Arabic text have garnered attention, there exists a considerable gap in integrating widely used tools like AFINN, TextBlob, VADER, and Pattern.en for text polarity due to compatibility issues with Arabic text. This study addresses this gap by striving to make Arabic text compatible with these dictionaries, presenting a comprehensive analysis. The findings suggest that AFINN and VADER emerge as the most suitable dictionaries for effective sentiment analysis in Arabic text. Specifically, AFINN achieved 83% accuracy, with a precision of 0.88, recall of 0.80, and an F1-score of 0.84 for negative sentiment, and a precision of 0.77, recall of 0.86, and an F1-score of 0.82 for positive sentiment. VADER demonstrated 83% accuracy, with a precision of 0.88, recall of 0.80, and an F1-score of 0.84 for negative sentiment, and a precision of 0.78, recall of 0.86, and an F1-score of 0.82 for positive sentiment. These results indicate that both AFINN and VADER are effective tools for sentiment analysis in Arabic, providing a reliable solution for text polarity classification.

Downloads

Download data is not yet available.

References

S. Tiwari, M. C. Trivedi, M. L. Kolhe, K. K. Mishra, and B. K. Singh, “Advances in Data and Information Sciences”, Proceedings of ICDIS 2021, 2022, vol. 2, pp. 293–293, [Online]. Available: http://dx.doi.org/10.1007/978-981-10-8360-0_8%0Ahttp://link.springer.com/10.1007/978-981-10-8360-0.

L. Rao, “Sentiment Analysis of English Text with Multilevel Features”, Sci. Program., vol. 2022, 2022, doi: 10.1155/2022/7605125.

M. R. R. Rana, A. Nawaz, T. Ali, A. M. El-Sherbeeny, and W. Ali, “A BiLSTM-CF and BiGRU-based Deep Sentiment Analysis Model to Explore Customer Reviews for Effective Recommendations”, Eng. Technol. Appl. Sci. Res., vol. 13, no. 5, pp. 11739–11746, 2023, doi: 10.48084/etasr.6278.

M. A. Kausar, S. O. Fageeri, and A. Soosaimanickam, “Sentiment Classification based on Machine Learning Approaches in Amazon Product Reviews”, Eng. Technol. Appl. Sci. Res., vol. 13, no. 3, pp. 10849–10855, 2023, doi: 10.48084/etasr.5854.

A. E. A. Hamouda and F. E. El-taher, “Sentiment Analyzer for Arabic Comments System”, Int. J. Adv. Comput. Sci. Appl., vol. 4, no. 3, pp. 99–103, 2013, doi: 10.1055/s-2005-870135. DOI: https://doi.org/10.14569/IJACSA.2013.040317

R. Elhassan and M. Ahmed, “Arabic text classification: review”, Int. J. Comput. Sci. Softw. Eng., vol. 4, no. 1, pp. 1–5, 2015.

S. Al-Osaimi and M. Badruddin, “Sentiment Analysis Challenges of Informal Arabic Language”, Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 2, 2017, doi: 10.14569/IJACSA.2017.080237. DOI: https://doi.org/10.14569/IJACSA.2017.080237

M. Abdul-Mageed, M. Diab, and S. Kübler, “SAMAR: Subjectivity and sentiment analysis for Arabic social media”, Comput. Speech Lang., vol. 28, no. 1, pp. 20–37, 2014, doi: 10.1016/j.csl.2013.03.001. DOI: https://doi.org/10.1016/j.csl.2013.03.001

G. Alwakid, T. Osman, and T. Hughes-Roberts, “Challenges in Sentiment Analysis for Arabic Social Networks”, Procedia Comput. Sci., vol. 117, pp. 89–100, 2017, doi: 10.1016/j.procs.2017.10.097. DOI: https://doi.org/10.1016/j.procs.2017.10.097

D. A. Musleh et al., “Arabic Sentiment Analysis of YouTube Comments: NLP-Based Machine Learning Approaches for Content Evaluation”, Big Data Cogn. Comput., vol. 7, no. 3, 2023, doi: 10.3390/bdcc7030127.

D. Conti, C. E. Gomez, J. G. Jaramillo, and V. E. Ospina, “Monitoring the Quality and Perception of Service in Colombian Public Service Companies with Twitter and Descriptive Temporal Analysis”, Appl. Sci., vol. 13, no. 18, 2023, doi: 10.3390/app131810338.

O. Abiola, A. Abayomi-Alli, O. A. Tale, S. Misra, and O. Abayomi-Alli, “Sentiment analysis of COVID-19 tweets from selected hashtags in Nigeria using VADER and Text Blob analyser”, J. Electr. Syst. Inf. Technol., vol. 10, no. 1, 2023, doi: 10.1186/s43067-023-00070-9.

M. J. Domínguez Vázquez and R. H. Gouws, “The Definition, Presentation and Automatic Generation of Contextual Data in Lexicography”, Int. J. Lexicogr., vol. 36, no. 3, pp. 233–259, 2023, doi: 10.1093/ijl/ecac020.

N. Thakur, “Sentiment Analysis and Text Analysis of the Public Discourse on Twitter about COVID-19 and MPox”, Big Data Cogn. Comput., vol. 7, no. 2, 2023, doi: 10.3390/bdcc7020116.

S. M. Saqib, M. Z. Asghar, A. Al-rasheed, M. A. Khan, and Y. Ghadi, “DenseHillNet : a lightweight CNN for accurate classification of natural images”, PeerJ Comput. Sci., pp. 1–21, 2024, doi: 10.7717/peerj-cs.1995.

S. M. Saqib et al., “Cataract and glaucoma detection based on Transfer Learning using MobileNet”, Heliyon, vol. 10, no. 17, 2024, doi: 10.1016/j.heliyon.2024.e36759.

S. Muhammad Saqib et al., “MobVGG: Ensemble technique for birds and drones prediction”, Heliyon, vol. 10, no. 21, 2024, doi: 10.1016/j.heliyon.2024.e39537.

A. O. Shakeel Ahmad, Sheikh Muhammad Saqib, “LSI Based Search Technique: Using Extracted Keywords and Key Sentences”, VAWKUM Trans. Comput. Sci., vol. 14, no. 2, pp. 1–8, 2017. DOI: https://doi.org/10.21015/vtcs.v14i2.471

S. M. Saqib et al., “Integrating YOLO and WordNet for automated image object summarization”, Signal, Image Video Process., 2024, doi: 10.1007/s11760-024-03560-z.

S. Muhammad Saqib, S. Ahmad, A. Hassan Syed, T. Naeem, and F. Mazaed Alotaibi, “Grouping of Aspects into Relevant Category Based on WordNet Definitions”, IJCSNS Int. J. Comput. Sci. Netw. Secur., vol. 19, no. 2, p. 113, 2019.

E. Atwell, C. Brierley, K. Dukes, M. Sawalha, and A. Sharaf, “An Artificial Intelligence approach to Arabic and Islamic content on the internet”, NITS 3rd Natl. Inf. Technol. Symp., pp. 1–13, 2011, doi: 10.13140/2.1.2425.9528.

S. Lagrini and M. Redjimi, “Automatic Arabic Text Summarization Approaches”, Int. J. Comput. Appl., vol. 164, no. 5, pp. 31–37, 2017, doi: 10.5120/ijca2017913628. DOI: https://doi.org/10.5120/ijca2017913628

H. N. Fejer and N. Omar, “Automatic multi-document Arabic text summarization using clustering and keyphrase extraction”, J. Artif. Intell., vol. 8, no. 1, pp. 1–9, 2015, doi: 10.3923/jai.2015.1.9. DOI: https://doi.org/10.3923/jai.2015.1.9

R. Belkebir and A. Guessoum, “A supervised approach to arabic text summarization using adaboost”, Adv. Intell. Syst. Comput., vol. 353, pp. 227–236, 2015, doi: 10.1007/978-3-319-16486-1_23. DOI: https://doi.org/10.1007/978-3-319-16486-1_23

S. A. Sheikh Muhammad Saqib, Fazal Masud Kundi, “Automatic classification of product reviews into interrogative and noninterrogative: Generating real time answer”, Int. J. Adv. Appl. Sci., vol. 6, no. 8, pp. 23–31, 2019, doi: 10.21833/ijaas.2019.08.004.

S. M. Saqib, F. M. Kundi, and S. Ahmad, “Unsupervised Learning Method for Sorting Positive and Negative Reviews Using LSI (Latent Semantic Indexing) with Automatic Generated Queries”, IJCSNS Int. J. Comput. Sci. Netw. Secur., vol. 18, no. 1, pp. 56–62, 2018.

D. Elangovan and V. Subedha, “Adaptive Particle Grey Wolf Optimizer with Deep Learning-based Sentiment Analysis on Online Product Reviews”, Eng. Technol. Appl. Sci. Res., vol. 13, no. 3, pp. 10989–10993, 2023, doi: 10.48084/etasr.5787.

H. J. Alyamani, S. Ahmad, A. H. Syed, S. M. Saqib, and Y. D. Al-Otaibi, “LSI Authentication-Based Arabic to English Text Converter”, Int. J. Fuzzy Log. Intell. Syst., vol. 21, no. 4, pp. 409–422, 2021, doi: 10.5391/IJFIS.2021.21.4.409.

B. Pang and L. Lee, “Opinion mining and sentiment analysis”, Found. Trends Inf. Retr., vol. 2, no. 1–2, pp. 1–135, 2008, doi: 10.1561/1500000011. DOI: https://doi.org/10.1561/1500000011

S. Muhammad and F. Masud, “MMO: Multiply-Minus-One Rule for Detecting & Ranking Positive and Negative Opinion”, Int. J. Adv. Comput. Sci. Appl., vol. 7, no. 5, pp. 122–127, 2016, doi: 10.14569/IJACSA.2016.070519. DOI: https://doi.org/10.14569/IJACSA.2016.070519

S. M. Saqib and F. M. Kundi, “Semi Supervised Method for Detection of Ambiguous Word and Creation of Sense : Using WordNet”, Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 11, pp. 353–359, 2018.

G. Badaro, R. Baly, and H. Hajj, “A large scale Arabic sentiment lexicon for Arabic opinion mining”, Arab. Nat. Lang. Process. Work. co-located with EMNLP 2014, pp. 165–173, 2014. DOI: https://doi.org/10.3115/v1/W14-3623

A. Masri and M. Al-Jabi, “A novel approach for Arabic business email classification based on deep learning machines”, PeerJ Comput. Sci., vol. 9, no. 2017, p. e1221, 2023, doi: 10.7717/peerj-cs.1221.

T. Alqurashi, “Arabic Sentiment Analysis for Twitter Data: A Systematic Literature Review”, Eng. Technol. Appl. Sci. Res., vol. 13, no. 2, pp. 10292–10300, 2023, doi: 10.48084/etasr.5662.

H. Hastang and R. Ahmad, “Analysis of Arabic language learning difficulties among students in the Qawaid Al-Lughah Al- Arabiyyah materials”, Didakt. J. Kependidikan, vol. 17, no. 1, pp. 31–42, 2023.

H. Almaqtari, F. Zeng, and A. Mohammed, “Enhancing Arabic Sentiment Analysis of Consumer Reviews: Machine Learning and Deep Learning Methods Based on NLP”, Algorithms, vol. 17, no. 11, 2024, doi: 10.3390/a17110495.

A. Alharbi, N. Sharma, and F. Hussain, “Arabic Sentiment Analysis with Social Network Data: A Comparative Study”, Proc. - 2024 IEEE Int. Conf. E-bus. Eng. ICEBE 2024, pp. 87–94, 2024, doi: 10.1109/ICEBE62490.2024.00022.

O. Alsemaree, A. S. Alam, S. S. Gill, and S. Uhlig, “Sentiment analysis of Arabic social media texts: A machine learning approach to deciphering customer perceptions”, Heliyon, vol. 10, no. 9, 2024, doi: 10.1016/j.heliyon.2024.e27863.

M. J. Al-khazaleh, M. Alian, and M. A. Jaradat, “Sentiment analysis of imbalanced Arabic data using sampling techniques and classification algorithms”, Bull. Electr. Eng. Informatics, vol. 13, no. 1, pp. 607–618, 2024, doi: 10.11591/eei.v13i1.5886.

A. Munshi et al., “Arabic Sentiment Analysis for Student Evaluation using Machine Learning and the AraBERT Transformer”, Eng. Technol. Appl. Sci. Res., vol. 13, no. 5, pp. 11945–11952, 2023, doi: 10.48084/etasr.6347.

W. M. S. Yafooz, E. A. Hezzam, and W. Alromema, “Arabic Sentiment Analysis on Chewing Khat Leaves using Machine Learning and Ensemble Methods”, Eng. Technol. Appl. Sci. Res., vol. 11, no. 2, pp. 6845–6848, 2021, doi: 10.48084/etasr.4026.

https://pypi.org/project/googletrans/.” .

https://opendatacommons.org/licenses/odbl/1-0/.” .

http://corpustext.com/reference/sentiment_afinn.html.” .

https://textblob.readthedocs.io/en/dev/.” .

https://www.geeksforgeeks.org/python-sentiment-analysis-using-vader/.” .

https://digiasset.org/html/pattern-en.html#article.” .

https://www.kaggle.com/datasets/abanoubsamir004/arabic-reviews-sentiment-analysis?resource=download.” .

H. J. Alyamani, “Sentiment Orientation Using Deep Learning Sequential and Bidirectional Models”, Int. J. Comput. Sci. Netw. Secur., vol. 11, no. 21, 2021.

Downloads

Published

2025-04-09

How to Cite

Exploring the best fit: A comparative analysis of AFINN, Textblob, VADER, and Pattern on Arabic reviews for optimal dictionary extraction. (2025). Mehran University Research Journal of Engineering and Technology, 44(2), 197-216. https://doi.org/10.22581/muet1982.3449

Similar Articles

11-15 of 15

You may also start an advanced similarity search for this article.