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 Travel dynamics significantly impact commuter stress, influenced by traffic 

behavior, road conditions, travel modes, distance, and socio-demographic 

characteristics. Previous research on travel stress often exhibits limitations, 

including narrow scopes focusing on specific routes, vehicle types, or 

demographics. This study addresses these constraints by employing a 

comprehensive approach to analyze the influence of various travel attributes on 

commuter stress levels. An interview-based dataset was collected to capture the 

multifaceted experiences of road users. Five tree-based machine learning models–

Decision Tree (DT), Random Forests (RF), Extra Trees (ET), Extreme Gradient 

Boosting (XGBoost), and k-Nearest Neighbor (k-NN)–were deployed for 

imbalanced multi-class classification. XGBoost demonstrated superior 

performance with the highest accuracy (73.33%) and precision (75.63%) with a 

standard deviation of ±5.9. A novel double hyperparameter optimization 

technique enhanced the prediction accuracy across all models, notably increasing 

the k-NN classifier’s accuracy to 19.99%. The SHAP (SHapley Additive 

exPlanations) method was utilized for model interpretability, revealing distance 

traveled per day as the most influential factor across stress levels, followed by 

mode of transport, gender, and age for low, medium, and high-stress categories, 

respectively. The study also examines the impact of features on individual 

commuter stress levels through random instance selection. This research provides 

valuable insights into the complex interplay between travel attributes and 

commuter stress, paving the way for the development of effective stress mitigation 

strategies and improved travel experiences for all road users. 

1. Introduction 

Karachi, the largest city in Pakistan and ranked among 

the top 10 most populous metropolitan areas globally, 

spans approximately 560 square miles and is home to 

an estimated 15 million people as of 2017 [1, 2]. This 

sprawling urban center features a diverse demographic 

composition, varied infrastructure, and extreme 

climatic conditions. The city’s extensive travel 

distances have profound implications for commuters’ 

health, with the quality of road infrastructure playing 

a pivotal role in ensuring their physiological comfort 

and psychological well-being [3]. The discipline of 

traffic science is intricately tied to the safety and 

comfort of road users, emphasizing the need for 

systematic urban planning and effective traffic 

management. 

mailto:aahmed@cloud.neduet.edu.pk


© Mehran University of Engineering and Technology 2025 2 

Good infrastructure and a planned transportation 

system are vital for a city’s prosperity. Conversely, 

inadequate infrastructure can adversely affect mental 

health, exacerbating stress and reducing the quality of 

life. Studies indicate that traffic congestion and 

transportation inefficiencies have resulted in 

significant psychological and physiological challenges 

for commuters [4]. Drivers are increasingly exposed to 

complex traffic scenarios, which complicate the 

prediction of stress responses [5]. 

Key factors contributing to these challenges 

include irregular and narrow roads, tight corners [6], 

double parking, wrong-way traffic, unsignalized 

intersections, speedy drivers [7], potholes, vehicle 

lights, CNG load-shedding, and slow or aggressive 

driving [8]. Additionally, road curvature and 

longitudinal gradients are reported to influence 

drivers’ stress levels [9].  Passengers are also impacted 

by factors such as travel mode, trip duration, distance, 

waiting time for public transport [6], traffic 

congestion, vehicle acceleration or deceleration, and 

disruptive passenger behaviors [8].  

Commuting has been identified as a significant 

source of stress for both working individuals and 

students [10]. While stress can arise from various 

commuting modes, some are particularly stressful 

compared to others. Legrain [11] determined that 

driving is the most stressful commuting mode among 

university students compared to walking and public 

transit. Similarly, Jahangeer [12] reported that 65.4% 

of medical students preferred university-provided 

transport over public transit due to overcrowding and 

discomfort, which exacerbate stress levels. In contrast, 

public transportation can serve as a stress-free 

alternative to private modes if it meets the 

requirements of seat availability, accessibility, safety, 

and cleanliness [13]. However, post-COVID-19, 

Singh [14] observed a notable decline in passengers 

using metro systems, carpooling, and buses. This trend 

has negatively impacted mental health by increasing 

social interaction anxiety and contributing to 

worsening traffic congestion.  

Time pressure to reach the workplace, traffic noise, 

anxiety, and road rage are significant stress-inducing 

factors [15]. In this context, Montoro [16] explores the 

relationship between work environment, stress, and 

driving anger, finding that driving anger mediates the 

associations between traffic sanctions and driving 

stress and partially between driving experience, hourly 

intensity, and job-related stress. Furthermore, road 

environments and weather conditions are critical 

determinants of a driver’s mental health [17]. Wei 

[18], through an experimental study involving 21 

drivers, quantified the mental workload by 

incorporating physiological signals, traffic flow, and 

environmental factors. These findings revealed a 

positive correlation in the order of physiological 

signals > traffic flow > environmental factors. 

Nevertheless, this study was limited to a few test 

drives conducted on predefined routes. 

Machine learning (ML) techniques have been 

widely applied in studies focused on predicting stress 

levels. For instance, a survey on mental health 

prediction among the working population employed 

Decision Tree (DT), Random Forest (RF), and Naïve 

Bayes models on the Open Sourcing Mental Illness 

(OSMI) survey dataset. The findings indicated that the 

DT model achieved the highest accuracy at 82% [19]. 

Similarly, another study utilized a multimodal dataset 

collected via the wearable device WESAD, proposing 

a stacking classifier model that demonstrated an 

impressive accuracy of 99.9% [20]. This model 

incorporated multiple classifiers, including Linear 

Discriminant Analysis (LDA), Adaptive Boosting 

(AdaBoost), RF, DT, and k-Nearest Neighbors (k-

NN), to classify three mental states: Neutral, Stress, 

and Amusement. Additionally, a hybrid model 

combining Gradient Boosting Machine (GBM) and 

RF was proposed in another study, effectively 

classifying five stress levels while outperforming both 

ML and deep learning (DL) models in terms of 

accuracy and computational efficiency [21]. 

Moreover, a comparative study of 13 classifiers across 

three schemes revealed that the Gradient Boosting 

Tree (GBT) series achieved the highest accuracy, 

recorded at 77.25% [22].  

Hyperparameter tuning is a crucial aspect of 

optimizing model performance and enhancing 

prediction accuracy. Without proper tuning, errors, 

outliers, and inconsistencies in the data can lead to 

overfitting. Overfitting occurs when a model learns 

patterns in the training data too well due to insufficient 

data, leading to suboptimal performance on unseen 

test data [23]. The challenges of small or imbalanced 

datasets exacerbate the risk of overfitting, further 

complicating the modeling process [24]. To address 

these challenges, this study introduces a Double 

Hyperparameter Optimization Technique (DHOT), an 

advanced method that refines the traditional 

hyperparameter optimization approaches. Grid search 
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cross-validation is commonly used to find optimal 

parameters, but DHOT improves this process by 

adding an extra layer of optimization, resulting in 

more robust and reliable models. 

Tree-based models like Random Forest (RF), 

XGBoost, and LightGBM are popular for many 

applications due to their inherent interpretability. 

However, when these models are combined with 

boosting and bagging techniques to enhance 

prediction performance, their interpretability and 

complexity diminish [25]. In this context, SHapley 

Additive exPlanations (SHAP) has emerged as a 

powerful tool for post hoc analysis, providing 

comprehensive methods for model interpretation and 

visualization. Based on cooperative game theory [26], 

SHAP elucidates how each feature impacts individual 

predictions. By attributing each prediction to the 

influence of different features, SHAP provides 

valuable insights into their contributions, making 

model predictions more transparent and trustworthy. 

Numerous studies have successfully demonstrated 

SHAP’s effectiveness in enhancing the interpretability 

of complex ML models [9, 23, 27-28]. 

This study investigates the dynamics of commuter 

stress through Shapley Additive exPlanations (SHAP), 

a robust AI explainability tool. The analysis is based 

on data collected via a questionnaire survey conducted 

at NED University of Engineering and Technology, 

Pakistan. The dataset reflects real-world conditions by 

including diverse vehicle types, travel routes, 

distances, participant ages, and professions. Five tree-

based machine learning classifiers were trained on this 

dataset, leveraging the advanced Double 

Hyperparameter Optimization Technique (DHOT) to 

enhance performance and accuracy. This research 

develops an explainable model to demonstrate how 

vehicle choice, travel distance, and socioeconomic 

factors influence mental health outcomes, uncovering 

insights often missed by traditional methods. 

The paper structure is depicted in Fig. 1. Section 1 

introduces the study, including a comprehensive 

literature review and identification of research gaps. 

Section 2 describes the methodology, encompassing 

the model development process and implementation of 

the DHOT approach, followed by model evaluation 

techniques. Section 3 presents the results and 

discussion, with a focus on model interpretation 

through SHAP explainers and a comparative analysis 

with prior studies. Finally, Section 4 offers concluding 

remarks and outlines recommendations for future 

research. 

 

Fig. 1. Workflow and the Structure of the Paper 

2. Methodology 

2.1 Dataset Collection 

The dataset for this study was collected through a 

structured questionnaire-based survey designed with 

two primary sections:  (1) Routine mobility details and 

(2) Socio-economic information. Participants self-

reported their stress levels using an 11-point Likert 

scale [29], ranging from 0 (strongly disagree) to 10 

(strongly agree). Stress levels were categorized as: 

High stress when medication was required, Medium 

stress when rest sufficed, and Low stress when no 

intervention was necessary.  

A total of 180 individuals voluntarily participated 

in the survey. Of these, the majority were female 

(54.4%), traveled primarily by private vehicles 

(53.89%), identified as students (47.8%), and reported 

daily travel distances categorized as Medium (14–26 

km) (35.56%). The dataset comprises six input 

features and one multiclass target variable, Stress. The 

target variable is distributed across three classes: Low 

Stress (52.78%), Medium Stress (40%), and High 

Stress (7.22%), indicating a notable imbalance in data 

classes, as detailed in Table 1.   

Class imbalance introduces challenges in machine 

learning model training, as models tend to favor 

majority classes, often at the expense of 

underrepresented ones. This can result in biased 

predictions or neglect of the minority class entirely. To 

address these challenges, further feature engineering 

and resampling techniques are employed to ensure 

balanced training and optimal model performance.  
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Table 1 

General characteristics of respondents 

 Category Features Class names 

and their 

responses 

Input 

Attributes 

Routine 

mobility 

Distance 

per day 

Short = 

33.33%, 

Medium = 

35.56%, Large 

= 31.11% 

Mode of 

Transport 

Car = 27.78%, 

Bike = 26.11%, 

Rickshaw = 

11.67%, Van = 

5%, Chingchi = 

9.44%, Point = 

10%, Bus = 

10% 

Driver or 

Passenger 

Driver = 

47.78%, 

Passenger = 

52.22% 

Socio-

Economic 

Gender Female = 

54.4%, Male = 

45.6% 

Age class Young = 

38.9%, 

Professional = 

36.1%, Old = 

25% 

Occupation Student = 

47.8%, Labor = 

8.86%, 

TechStaff = 

30.56%, Officer 

=7.78%, 

SnrHead = 5% 

Output 

target 

Mental 

stress 

level 

Stress level Low = 52.78%, 

Medium= 40%, 

High = 7.22% 

 2.2 Feature Engineering 

The input feature DistancePerDay (DPD) was sorted 

in ascending order and subsequently divided into three 

classes. The short class included distances less than 14 

km, the medium class ranged from 14-26 km, and the 

large class encompassed distances exceeding 26 km. 

Meanwhile, the Mode of Travel (MoT) feature was 

categorized into seven classes based on the diversity 

and privacy levels of vehicles commonly used in 

Karachi. These classes were assigned labels to reflect 

their comfort and privacy attributes. For instance, cars 

were classified as the most private and comfortable 

mode (Class 1), followed by bikes (Class 2), offering 

privacy but reduced comfort compared to cars. Modes 

such as rickshaws and van services, which cater to 

limited passengers along dedicated routes, were 

assigned Class 3 and Class 4, respectively. Chingchi, 

point services, and buses were categorized as Class 5, 

Class 6, and Class 7, respectively. Chingchi vehicles, 

in particular, are widely used paratransit vehicles in 

developing countries, offering low-cost, energy-

efficient transportation over short distances and a 

rapid alternative to traditional public transport [30]. 

The Occupation (Occu) feature reflects 

participants’ socio-economic roles, with 

classifications based on age, profession, and economic 

stability. Students, being younger and more dynamic, 

constituted one class. Laborers and Technical staff, 

representing mature, skilled personnel, formed the 

next two classes. The final two classes included 

officers and senior management, representing 

professionals who are socially collaborative, 

financially stable, and often vehicle owners. This 

feature introduces variability in predicting stress, as 

participants’ road experiences and socio-economic 

conditions directly influence mental health outcomes. 

Other input features, including gender, age class, 

and type of commuter, are inherently self-explanatory.  

The target variable, Mental Stress (MS), was 

categorized into three levels based on participants’ 

Likert-scale scores: Low (0-3), Medium (4-7), and 

High (8-10) [31]. Table 2 presents the statistical 

properties of the features, including mean and standard 

deviation. The dataset was complete, with no missing 

attributes.  

Given the inherent class imbalance in the dataset, 

stratification was applied to maintain a proportional 

representation of each target class during training and 

testing splits, set at an 80:20 ratio. For small datasets, 

stratification ensures that machine learning models are 

exposed to all sample varieties during their learning 

phase, preserving the original dataset’s class ratio 

during the training and testing phases. A detailed 

description of the formats of the training and testing 

datasets is depicted in Table 3. This is in accordance 

of the similar approach presented in [32]. 

Table 2 

Mean and standard deviation of input features and target 

output 

Feature names Class names,  

[encoding] 

Mean Standard 

deviation 

Gender, G Female [1], 

Male [2] 

1.45 0.49 

Age Class, AC Young [1], 

Professional [2],  

1.86 0.79 
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Old [3] 

Distance Per 

Day, DPD 

Short [1], 

Medium [2], 

Large [3] 

1.98 0.8 

Mode of 

Travel, MoT 

Car [1], 

Bike [2], 

Rickshaw [3], 

Van [4], 

Chingchi [5], 

Point [6], 

Bus [7] 

3.12 2.07 

Occupation, 

Occu 

Student [1], 

Labor [2], 

Tech Staff [3], 

Officer [4], 

Senior Head [5] 

2.13 1.24 

Driver or 

Passenger, 

DoP 

Driver [1], 

Passenger [2] 

1.52 1.52 

Stress, MS Low [0], 

Medium [1], 

High [2] 

0.54 0.63 

Table 3 

Shapes of Training and Test Sets 

Shapes X  y 

Shape of Train (144, 6) (144, ) 

Shape of Test (36, 6) (36, ) 

2.3 Experimental Setup 

This study employs five machine learning classifier 

algorithms: Decision Tree (DT) [33], Random Forest 

(RF) [34], Extra Trees (ET) [35], eXtreme Gradient 

Boosting (XGBoost) [36], and K-Nearest Neighbors 

(k-NN) [37]. Each model depends on hyperparameter 

tuning to optimize performance, as hyperparameters 

critically influence the model’s structure and 

predictive accuracy.  

To optimize performance, this study introduces a 

Double Hyperparameter Optimization Technique 

(DHOT) implemented in two distinct phases. The 

flowchart of the proposed model is illustrated in Fig. 

2.  

In phase I, grid search cross-validation is used to 

identify the best set of parameters. This process 

balances bias and variance by selecting the optimal 

value of K, thereby minimizing the risk of overfitting. 

Once the optimal parameters are identified, the model 

is discarded to prevent inefficiencies caused by 

repeated retraining cycles. In Phase II, a new model is 

trained and transformed with a standard scalar, 

utilizing the parameters optimized in Phase I. The 

stratified 4-fold cross-validation with three repetitions 

is employed to ensure robust generalization to unseen 

data. Following the grid search CV, the dataset split 

was adjusted to a 75:25 ratio for training and testing, 

in phase II. It improved the classifier performance, as 

detailed in Section 3.2. The DHOT framework 

guarantees that each classifier is fine-tuned with 

parameters uniquely tailored to its architecture, as 

different models exhibit varying performance 

depending on parameter configurations. Table 4 

presents the optimal hyperparameters determined 

during Phase I of the DHOT scheme. Notably, the 

cross-validation configuration (CV) was standardized 

to four folds across all models.  

 

Fig. 2. Flowchart for a Proposed Model Explaining the 

Double Hyperparameters Optimization Technique 

Table 4 

Optimal hyperparameters found using a grid search CV 

after phase I 

Models Optimal hyperparameters obtained after 

grid search  

Decision 

Trees 

maximum depth = 3, min. samples split = 

9, minimum sample leaves = 1 

Random 

Forests 

maximum depth = 6, min. samples split = 

10, minimum sample leaves = 6, n 

estimators = 50 

Extra 

Tree 

maximum depth = 3, min. samples split = 

7, minimum samples leaves = 8, n 

estimators = 10 

XGBoost maximum depth = 2, n estimators = 10, 

colsample_bytree = 0.1, learning rate = 

0.5 

k-NN n neighbors = 18, leaf size = 7 

2.4 Model Explainability Approach 

Machine learning models are often perceived as “black 

box” systems due to their limited interpretability. This 

study utilizes SHapley Additive exPlanations (SHAP), 

an advanced framework for explainable AI, offering 

insights from global to local levels [38]. SHAP 

(version 0.44.0) is utilized to interpret the best-

performing classifier among the five models. After 

training the selected model, SHAP explainers are 

generated using SHAP values associated with each 

feature or class, also referred to as “Expected” or 
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“Base” values. SHAP visualizations, such as summary 

and dependence plots, effectively illustrate positive 

and negative correlations of categorical features, 

offering a significant advantage in model 

interpretation. The explainability process is carried out 

in three stages, enabling a comprehensive post hoc 

analysis of the model’s behavior. 

2.4.1 Global-level interpretation (Stage I) 

At the global level, the mean absolute SHAP values 

are used to rank the importance of features in 

predicting stress levels. This ranking can differ across 

target classes. Summary plots are generated to 

illustrate the general behavior of the model, 

highlighting the most influential features for each 

stress level. The global feature importance is 

mathematically expressed as Eq. (1). 

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑗 =
1

𝐾
 ∑ |𝜑𝑖,𝑗|𝐾

𝑖=1          (1) 

Where: 

𝜑𝑖,𝑗: SHAP value of sample i for feature j. 

K: Total number of samples used in the interpretability 

analysis. 

2.4.2 Feature-interaction interpretation (Stage II) 

Feature-interaction effects are examined using 

dependence plots, which reveal the relationships 

between features and their contributions to predictions 

for each class. These plots provide a deeper 

understanding of how features interact and 

collectively influence the model’s predictions. 

2.4.3 Local-level interpretation (Stage III) 

At the local level, the contribution of individual 

features varies across specific data instances. For 

example, the mode of travel might be the dominant 

factor contributing to stress for one individual, 

whereas travel distance could play a more significant 

role for another. SHAP enables a detailed instance-

level analysis to explain how different features 

influence predictions in a multi-class classifier. 

For this study, a randomly selected instance is 

analyzed to demonstrate SHAP’s local-level 

interpretability. The expected value for each class is 

given in Eq. (2): 

𝐸𝑉𝑖 = 𝜇𝑖 +  ∑ ∅𝑖𝑗
𝑀
𝑗=1              (2) 

Where: 

EVi: Expected value for class i. 

𝜇𝑖: Base value for class i. 

∅𝑖𝑗: SHAP value for feature j and class i. 

M: Total number of features. 

3. Results and Discussions 

3.1 DHOT Analysis 

The implementation of the Double Hyperparameter 

Optimization Technique (DHOT), as outlined in Fig. 

2, significantly enhances the accuracy and efficiency 

of the five ML classifiers, particularly for small 

datasets. Fig. 3 highlights the improvements achieved 

through DHOT, with notable accuracy gains across all 

models. Among the classifiers, XGBoost 

demonstrates the highest accuracy, while k-NN 

exhibits the largest percentage increase, achieving a 

19.99% improvement. The Random Forest (RF) 

classifier follows with a 16.36% increment, whereas 

XGBoost, Extra Trees (ET), and Decision Tree (DT) 

classifiers show enhancements of 14.77%, 12.73%, 

and 9.09%, respectively. 

It is observed that ET and XGBoost achieved 

optimal performance at n_estimators = 10, whereas 

RF performs best at n_estimators = 50 (Table 4). Each 

model also attains peak performance at its respective 

optimal maximum depth, underscoring the importance 

of targeted hyperparameter tuning in boosting model 

accuracy and reliability. 

 

Fig. 3. Accuracies of ML Models ‘Before Optimization’, 

‘After Traditional Approach, and ‘After DHOT Approach, 

3.2 Comparison and Evaluation of Performance 

Metrics 

The classification performance of all five ML 

classifiers is summarized in Table 5, which includes 

precision, recall, and F1-score metrics. Among the 

classifiers, XGBoost achieves the highest performance 

with precision at 75.6%, recall at 73.3%, and an F1 

score of 69.8%. The Random Forest (RF) classifier 

follows closely, with precision, recall, and F1-score 

values of 74.6%, 71.1%, and 69%, respectively. For 

the Extra Trees (ET) classifier, these metrics are 

70.3%, 66.7%, and 65.2%, respectively. The Decision 

Tree (DT) and k-NN classifiers show similar 

61.11% 61.11% 61.11%

63.89%

55.56%

64.58%

66.67% 68.05% 66.67%

63.17%

66.67%

71.11%

68.89%

73.33%

66.67%

50.00%

55.00%

60.00%

65.00%

70.00%

75.00%

80.00%

Decision TreesRandom ForestsExtra Tree XGBoost K-NN

Initial Accuracy Traditional approach DHOT approach
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performance, with precision scores of 69.4% and 

68.2% and identical recall scores of 66.7%. The 

corresponding F1 scores are 63.4% for DT and 61.6% 

for k-NN. 

To assess performance variability, standard 

deviation (SD) is incorporated into the analysis. A low 

SD reflects robustness and minimal sensitivity to 

random variations in the data. Among the classifiers, 

k-NN and DT exhibit lower SD, indicating consistent 

performance across multiple runs or cross-validation 

folds. 

Following Li’s approach [39], the classification 

accuracy is adjusted by ± SD to evaluate statistical 

significance. The revised accuracy range for 

XGBoost, spanning from 67.43% to 79.23%, confirms 

it as the most reliable model based on both minimum 

and maximum accuracy brackets. In terms of overall 

performance, the classifiers rank as follows: XGBoost 

> RF > ET > k-NN > DT. 

Table 5 

Comparison of classification report of experimented models 

 DT RF ET XGB k-NN 

Accuracy 

(%) 

66.67 71.11 68.89 73.33 66.67 

Precision 

(%) 

69.4 74.6 70.3 75.6 68.2 

Recall (%) 66.7 71.1 66.7 73.3 66.7 

F1-score 

(%) 

63.4 69.0 65.2 69.8 61.6 

SD (%) 4.6 6.5 5.7 5.9 4.5 

Accuracy 

± SD (%) 

62.07  

↔ 

71.27 

64.61 

↔ 

77.61  

63.19 

↔ 

74.59 

67.43 

↔ 

79.23 

62.17 

↔ 

71.17 

Rank 5 2 3 1 4 

The study identifies the XGBoost model as the 

most effective for the stress prediction problem, 

outperforming other tree-based models in all evaluated 

metrics. Consequently, the XGBoost classifier is 

selected for detailed analysis and interpretation using 

SHAP in the subsequent sections. 

3.3 SHAP Global Interpretation 

The SHAP summary plot provides a global 

interpretation of the XGBoost model’s output, with 

features arranged in descending order of importance 

(Fig. 4). The top-ranked feature has the greatest impact 

on stress prediction. Positive SHAP values on the x-

axis indicate a higher likelihood of increased stress, 

while negative values suggest a mitigating effect.  The 

multi-colored vertical bars reflect class intensity: blue 

denotes lower values, and red signifies higher values. 

The three subplots represent stress levels –low, 

medium, and high.  

For low stress (Fig. 4a), DistancePerDay (DPD) 

and ModeOfTravel (MoT) are the most influential 

factors. Shorter distances and private travel modes 

positively correlate with reduced stress, aligning with 

findings by [12], which highlighted the stress-

reducing effects of shorter commutes and personal 

travel modes.  

In medium stress levels (Fig. 4b), DPD remains the 

dominant factor, with a lesser contribution from MoT. 

Stress levels increase with travel distance, consistent 

with studies [12] and [40] showing that commute 

duration adversely affects satisfaction irrespective of 

travel mode. Additionally, the model suggests males 

are more prone to medium stress on longer routes than 

females.  

High-stress levels (Fig. 4c) are predominantly 

influenced by Occupation and AgeClass, unlike other 

stress levels.  Officers and technical staff experience 

greater stress than students, and older individuals are 

more affected than younger ones. This is supported by 

[17], which states that older age, long distances, and 

higher income contribute to high stress levels. These 

factors are typical of top-position employees who are 

likely to suffer from job stress, which, in turn, 

contributes to travel-related stress. Interestingly, the 

type of commuter (driver or passenger) has minimal 

influence on predicting road stress. 

 

Fig. 4. Global Level Interpretation of Stress (a) Low, (b) 

Medium, (c) High 

3.4 SHAP Feature Interaction Interpretation 

‘SHAP Dependence Plots’ illustrate feature 

interactions for the XGBoost model. Fig. 5 visually 

represents the relationship between DistancePerDay 

(DPD) and ModeOfTravel (MoT) through SHAP 

values. The x-axis represents seven MoT subclasses, 
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ranging from private modes (e.g., cars, bikes) to public 

transport (e.g., buses). The y-axis displays SHAP 

values while the vertical color intensity reflects DPD, 

with red indicating larger distances and blue indicating 

shorter distances.   

Key observations from the SHAP dependence plot 

include: 

 

Fig. 5. Feature Interaction Interpretation using 

Dependence Plot for XGBoost Classifier 

(i) Short-distance travelers experience lower stress 

Individuals traveling shorter distances using private or 

semi-private modes of transport experience low stress 

levels. This aligns with [6], which found that shorter 

walking or commuting distances improve travel 

satisfaction.  

(ii) Stress levels among bike riders and chingchi 

travelers 

Both bike riders and Chingchi travelers exhibit low 

stress levels, especially for medium distances. This is 

supported by [41], which associates paratransit modes 

like Chingchi with efficient navigation through 

congested areas, cost-effectiveness, time savings, and 

limited passenger occupancy, all contributing to 

reduced stress levels. Additionally, bike riders can 

navigate traffic more easily, often using shortcuts or 

less congested routes, further reducing stress levels. 

(iii) Public transport use for long distances 

Long-distance commuters predominantly prefer 

buses, while short-distance travelers tend to avoid 

them. This highlights the practical use of public 

transport for extended commutes.   

(iv) Van Services as Stress-Free Travel 

Van services consistently predict the lowest stress 

levels across all distances. This can be attributed to 

features like dedicated seating, fixed routes, and 

limited passenger occupancy, offering a comfortable 

travel experience. 

(v) Increased Trust in Model Predictions 

The model does not predict Chingchi users for long 

distances, which is practically accurate since Chingchi 

services are typically offered for short distances or 

nearby places. This observation increases trust in the 

model’s prediction.  

3.5 SHAP Local Interpretation 

SHAP facilitates effective local interpretation at the 

individual level, enabling a detailed analysis of 

specific predictions. This is demonstrated using a 

Decision Plot, which visualizes the step-by-step 

contribution of SHAP values for individual features 

towards the model’s final prediction [42].  

A few random instances are selected to interpret the 

model’s decision-making process. Fig. 6 displays 

three colored lines representing the predicted stress 

classes: “High” (blue), “Medium” (purple), and 

“Low” (red-dotted). The rightmost line indicates the 

final prediction. The central grey line is the baseline, 

which is 0.346 for our model. The baseline is the 

average of the expected values for all output classes in 

the model. Deviations of the stress-class lines from the 

baseline reflect the positive or negative contributions 

of features toward the final prediction.  The dotted line 

indicates the stress level predicted by the model. 

For a random instance, e.g., sample_index =0, is 

interpreted for the local level interpretation as shown 

in Fig. 6(a). The expected values for Low, Medium, 

and high stress levels are [1.096, 0.803, -0.860], 

respectively. The XGBoost model identifies 

Occupation, DPD, and AgeClass as the top 

contributing features for this prediction. The 

participant is assigned a “low” stress level, which 

aligns with her profile retrieved from the dataset 

(Table 6). She is a student (occupation), travels a short 

distance (DPD), and belongs to a younger age group 

(AgeClass). These factors collectively influence the 

prediction of a low-stress level.  

For sample_index = 7 (Fig. 6b), the XGBoost 

model identifies the features such as ModeOfTravel, 

Occupation, and Gender as key contributors towards 

stress level, whereas for sample_index = 12 (Fig. 6c) 

the XGBoost model identifies Occupation, AgeClass 

and DistancePerDay as the most contributing features 

towards stress level. The participant in Fig. 6(b) is 

classified with a ‘medium’ stress level, while the one 

in Fig. 6(c) is assigned a “high” stress level. These 

classifications align with the actual stress levels 

reported in the survey, as confirmed by their respective 

profiles in the dataset.  
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Fig. 6. A Scenario for Randomly Chosen Instance (a) Low, 

(b) Medium (c) High  

Table 6 

Details retrieved from the dataset of sample index =0 

Features Report 

Gender Female 

Age class Young 

Distance per Day Short 

Mode of Travel Rickshaw 

Occupation Student 

Driver or passenger Passenger 

Stress level Low 

4. Conclusion 

The study demonstrates a robust understanding of the 

stress prediction model and its interpretability at both 

global and local levels. Among the classifiers 

evaluated, the XGBoost model stands out as the most 

suitable due to its superior accuracy, precision, and 

low standard deviation, making it highly stable for 

small and imbalanced datasets that are prone to 

overfitting. 

The reported XGBoost accuracy (73.33%) reflects 

the complexity of our multiclass stress classification 

task, dataset characteristics, and feature space. Unlike 

previous studies that may have used binary 

classification, different datasets, or feature 

engineering techniques, our approach priorities real-

world generalizability over solely optimizing 

accuracy. Moreover, for smaller datasets (n < 200) and 

fewer input variables (x ≤ 6), model accuracy can be 

significantly enhanced through a double 

hyperparameter optimization technique (DHOT). 

Traditional optimization methods improve accuracy 

moderately, DHOT achieves substantial gains –

enhancing the XGBoost model compared to 4.35% 

improvement from conventional methods. Similarly, 

DHOT outperforms standard tuning in k-NN, 

increasing accuracy by 19.99% versus 13.69%. While 

traditional optimization methods remain effective for 

larger datasets, DHOT demonstrates particular 

efficacy in maximizing accuracy for smaller datasets.   

The study also underscores the variability in stress 

levels among individuals, even when exposed to 

similar factors. Utilizing SHAP as an explainable AI 

tool, the model provides insights through global and 

local interpretations. The summary plot ranks features 

by their global influence, while the decision plot 

reveals the most critical factors for individual 

predictions, enhancing the model’s transparency and 

trustworthiness.  

Furthermore, this work offers a comprehensive 

analysis of road travel stress by considering diverse 

factors such as vehicle types, age groups, socio-

economic backgrounds, continuous travel histories, 

varied route experiences, and the effects of road 

infrastructure and traffic congestion. These findings 

can guide policymakers in designing targeted 

interventions to mitigate travel stress, such as 

improving road conditions, optimizing traffic flow, 

and promoting alternative travel modes.  

In conclusion, this study underscores the 

importance of adopting inclusive, data-driven 

approaches to enhance commuter well-being and 

transportation system efficiency, offering valuable 

insights for advancing smart and sustainable urban 

mobility solutions. 
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