
© Mehran University of Engineering and Technology 2025 1

Mehran University Research Journal of Engineering and Technology

https://doi.org/10.22581/muet1982.3289

 2025, 44(2) 164-173

Regression-based predictive modelling of software size of fintech projects using

technical specifications

Iqra Kanwal a, *, Ali Afzal Malik a

a FAST School of Computing, National University of Computer and Emerging Sciences (NUCES), Lahore

* Corresponding author: Iqra Kanwal, Email: iqrakanwal545@gmail.com

Received: 10 June 2024, Accepted: 27 March 2025, Published: 01 April 2025

K E Y W O R D S A B S T R A C T

K-fold cross validation

Lines of code

Multiple linear regression

Size prediction model

Software size prediction

Technical specifications

 This research aims to develop a predictive model to estimate the lines of code

(LOC) of software projects using technical requirements specifications. It

addresses the recurring issue of inaccurate effort and cost estimation in software

development that often results in budget overruns and delays. This study includes

a detailed analysis of a dataset comprising past real-life software projects. It

focuses on extracting relevant predictors from projects' requirements written in

technical and easily comprehensible natural language. To assess feasibility, a pilot

study is conducted at the beginning. Then, Simple Linear Regression (SLR) is

employed to determine the relative predictive strength of eight potential predictors

identified earlier. The number of API calls is found to be the strongest independent

predictor (R2 = 0.670) of LOC. The subsequent phase entails constructing a

software size prediction model using Forward Stepwise Multiple Linear

Regression (FSMLR). The adjusted R2 value of the final model indicates that two

factors – the number of API calls and the number of GUI fields – account for more

than 80% of the variation in code size (measured using LOC). Model validation

is performed using k-fold cross-validation. Validation results are also promising.

The average MMRE of all folds is 0.203 indicating that, on average, the model's

predictions are off by approximately 20% relative to the actual values. The

average PRED (25) is 0.708 implying that nearly 71% of predicted size values are

within 25% of the actual size values. This model can help project managers in

making better decisions regarding project management, budgeting, and

scheduling.

1. Introduction

In the dynamic realm of software development,

innovation races hand in hand with complexity.

Conceiving, developing, and delivering successful

software projects in such a dynamic and complex

environment, requires effective project management.

Effective project management, in turn, requires

thorough planning, continuous monitoring, and

intelligent resource allocation.

The backbone of all software projects is an artifact

called the project plan. The core of the project plan is

the project schedule. This schedule is built around

estimates of software size, effort, time, and cost.

Therefore, the foundation of project management is

estimation.

 Since most real-life software projects are

complicated, estimating the amount of effort, time,

and resources needed to complete a project requires a

methodical approach [1]. Furthermore, all such

methodological approaches need a starting point

which is provided by size estimation since software

size is considered one of the most important

determinants of project effort, duration, and

staff/resources. Thus, regardless of whether the

classical waterfall process or a modern agile process is

mailto:iqrakanwal545@gmail.com

© Mehran University of Engineering and Technology 2025 2

used, reliable software size estimation is crucial for

developing a realistic project plan.

 Software size, to a great extent, depends on the

number and complexity of software features.

Technical requirements specifications act as the basis

for providing the details of the features required in the

software that needs to be developed and maintained

[2]. These technical requirements are available early

in the software development life cycle (SDLC). Thus,

the information contained in these technical

specifications can be used for early software size

estimation.

Over the years, several software size and effort

estimation techniques and models have been

proposed. These include function point analysis

(FPA), parametric modeling, and expert judgment [3].

Parametric software cost estimation models like

COCOMO II [4] and functional sizing approaches like

FPA [5] have been widely used for decades to estimate

project effort and size [6]. Despite their widespread

usage, these approaches and models exhibit some

limitations in adapting to modern development

scenarios and diverse project environments. The shift

towards machine learning-based models has

introduced a more adaptable and data-driven

approach. These models, however, rely heavily on

historical data, which potentially limits their

applicability in cases of novel projects lacking

substantial historical references [7].

Software size is often measured in lines of code

(LOC). As expected, there is no universal method,

approach, or technique for LOC estimation that works

for all projects. This is precisely because projects

differ greatly in complexity, scale, and scope. Size

estimation of complex real-life software projects often

requires a more personalized approach. A size

prediction model that incorporates project-specific

information contained in the technical requirements

specifications of a project may provide more accurate

results. This study aims to build such a model.

Data collection is one of the most important parts

of this research. Technical requirements specifications

of past real-life projects are used as a source. Data

obtained from these specifications is analyzed to

identify the factors that can help in predicting the size

(LOC) of a project. First, the individual predictive

strength of these factors is determined using simple

linear regression (SLR). Then, forward stepwise

multiple linear regression (FSMLR) is used to build

and validate a size prediction model using the factors

identified earlier.

 The following three research questions (RQs) are

addressed in this study:

RQ1: Which factors (identified from the technical

requirements specifications) affect the

variation in LOC for different software

projects?

RQ2: What is the relative predictive strength (in

terms of R2 value) of each factor in

predicting LOC?

RQ3: How accurately can an FSMLR-based

model built using the factors identified

earlier predict the size (LOC) of a software

project?

The next section discusses previous work in this

area. Section 3 presents a summary of our research

methodology. Section 4 contains a detailed discussion

of the factors identified as LOC predictors. Section 5

summarizes our pilot study, while Section 6 describes

our data collection. Sections 7 and 8 present and

discuss the results of SLR and MLR, respectively. The

results of model validation are summarized and

discussed in Section 9. Section 10 outlines the threats

to the validity of these results. Finally, Section 11

highlights our main contributions and presents some

directions for future work in this area.

2. Related Work

Machine learning (ML) algorithms enable computers

to understand problems and produce effective and

efficient solutions. Zakaria et al. [8] compared the

effort estimation accuracy of four different ML

algorithms i.e. Random Forest (RF), Linear

Regression (LR), Regression Tree (RT), and Support

Vector Machine (SVM). The effort prediction

accuracy of these four ML algorithms was compared

on four different datasets i.e. COCOMO NASA 1,

COCOMO NASA 2, COCOMO81, and Kaushik et al.,

2012. SVM was found to give good results. Another

important finding from their research was that not all

attributes of the dataset were relevant for effort

estimation. Only five attributes of the COCOMO

datasets were found to be relevant. Our current

research is similar to their research in the sense that

our final size prediction model (made using FSMLR)

uses a subset of the eight potential predictors identified

earlier. However, the main difference between our

work and theirs is that we focus on size estimation

while their focus is on effort estimation. Another

significant distinction is that, instead of depending on

a pre-existing set of predictors like COCOMO model

drivers, we find our own potential predictors.

Sharma and Kushwaha [9] first proposed a new

metric called Improved Requirement Based

Complexity (IRBC) for quantifying the complexity of

requirements documented in the software

© Mehran University of Engineering and Technology 2025 3

requirements specification (SRS) of a software

project. Later, they developed an approach for

augmenting the original function points approach with

IRBC to estimate the software development effort

(SDE) of a software project. The results of this

approach were also compared with other existing SDE

techniques such as use case-based estimation. Our

research is similar to theirs in the sense that we also

use requirements-related information for early

estimation. One of the main differences, however, is

that our focus is on size estimation instead of effort

estimation. Secondly, we use technical requirements

specifications instead of SRS as input.

Ayyıldız and Koçyigit [10] studied the correlations

between problem domain measures (specifically, the

number of distinct nouns and verbs in requirements)

and solution domain measures (specifically, the

number of software classes and methods in object-

oriented software) to improve early software size

estimation. They analyzed data from 12 commercial

software projects to develop MLR-based estimation

models for solution domain metrics based on problem

domain metrics. The prediction accuracy of their

models was found to be acceptable. Our research also

focuses on early estimation. However, instead of using

parts of speech (e.g., nouns and verbs) to predict

design concepts (e.g., classes and methods), our model

directly predicts size (LOC) using the information

contained in the technical requirements specifications.

Lind and Heldal [11] looked at the utility of using

the COSMIC Functional Size Measurement (FSM)

method [12] to estimate the implemented code size (in

bytes) of embedded software components in the

automotive industry. They found a strong correlation

between the two. Like our approach, their approach

can also be used for early size estimation. However,

determining the COSMIC function points of a

software application from a given requirements

specification is a non-trivial exercise that requires

prior training. On the other hand, prior training is not

required when using our proposed size (LOC)

estimation approach.

Table 1 presents a summary of the past related

works discussed earlier in this section. Apart from

summarizing the main contributions of these works,

this table also highlights their limitations and main

differences from our work.

Table 1

Summary of related work

Sr# Title Author(s) Publication Year Main Contributions Limitations/

Differences

1 Software Project

Estimation with

Machine Learning

Zakaria et al. 2021 A comparative study of 4

different ML algorithms

using 4 different datasets.

Not all attributes are

relevant for effort

estimation.

Used pre-existing

predictors (i.e.

COCOMO model

drivers).

They are majorly

focused on effort

estimation instead of

size estimation.

2 A Case Study on the

Utilization of

Problem and Solution

Domain Measures for

Software Size

Estimation

Ayyıldız and

Koçyigit

2016 MLR-based estimation

models for solution

domain metrics based on

problem domain metrics.

Indirect estimation of

software size in terms

of the number of

classes and methods

instead of LOC.

3 Estimation of

Software

Development Effort

from Requirements

Based Complexity

Sharma and

Kushwaha

2012 Prediction of software

development effort using

the function points

approach augmented with

requirement-based

complexity.

Used SRS instead of

technical requirements

specifications.

They are majorly

focused on effort

estimation instead of

size estimation.

4 A Practical Approach

to Size Estimation of

Embedded Software

Components

Lind and Heldal 2012 Correlation between

COSMIC function points

and implemented code

size (in bytes) for

Determining COSMIC

function points from a

given requirements

© Mehran University of Engineering and Technology 2025 4

embedded software

components.

specification requires

prior training.

3. Research Methodology

Fig. 1 provides a pictorial summary of our research

methodology. The first step was to identify the factors

(hereinafter called predictors) that could play an

important role in predicting software size (LOC). This

was followed by a pilot study aimed at gauging the

magnitude of effort required in gathering data and

refining the research design before proceeding further.

The next main step was data collection, which

involved extracting quantitative data from technical

requirements specifications as well as the final code of

real-life software projects. Once the data was

collected, it was pre-processed to detect any outliers.

Then, the data was analyzed using both SLR and

FSMLR to determine the relative strength of each

predictor individually and to build a software size

(LOC) prediction model. Last, but not the least, the

prediction accuracy of this size prediction model was

assessed using commonly used accuracy metrics, and

the model was validated using k-fold cross-validation.

The following sections describe these main steps of

our research in more detail.

Fig. 1. Main Research Steps And Their Sequence

4. Predictor Identification

Table 2 lists all nine quantitative software size (LOC)

predictors.

Table 2

Predictors

Sr# Name Abbreviation

1 Number of API Calls nAPI

2 Number of Third-Party

Libraries

nTPL

3 Number of GUI Fields nGUI

4 Number of Input

Validation Checks

nIVC

5 Number of Database

Queries

nDBQ

6 Number of Total Execution

Steps

nTES

7 Number of Scenarios nSCN

8 Number of Security

Checks

nSEC

9 Number of Exception

Handling Checks

nEHC

These predictors were identified by analyzing

technical requirements specifications of real-life

projects and by holding discussions with experts and

software development team members. This answers

RQ1.

Each predictor has been given a four-letter

abbreviation for easy reference. nAPI refers to the

application programming interfaces (APIs) that need

to be developed while implementing a feature along

with the wrapper services to call these APIs. nTPL is

the count of the third-party libraries and helper classes

(made available by the relevant language and/or

framework) that are used to implement a feature. nGUI

refers to the graphical user interface (GUI) fields that

need to be made available on the screen for receiving

inputs. nIVC corresponds to the number of input

validation checks. Each GUI field used for input can

be associated with several input validation checks.

Table 3 lists the various input validation checks that

may be required on any particular input GUI field.

Table 3

Input validation checks

Sr# Name

1 Min length

2 Max length

3 Min value

© Mehran University of Engineering and Technology 2025 5

4 Max value

5 Regex

6 Mandatory

7 Valid selected item

8 File type (pdf, CSV, etc.)

nDBQ captures all direct interactions with the

database to perform certain operations without the

help of any API. Every execution step required to

implement a feature is counted in nTES, while all

possible scenarios (success as well as failure) are

counted in nSCN. nSEC refers to the security checks

required to be implemented in a feature. Table 4

provides a list of the different types of security checks

that may be required. Finally, nEHC is the count of the

exceptions that are handled in the code explicitly. All

such exceptions result in displaying a user-friendly

error message.

Table 4

Security checks

Sr# Name

1 SQL injection

2 XSS

3 CSRF

4 File upload

5 Access redirections

6 Struts token validations

7 Public flow authentications

5. Pilot Study

A pilot study was conducted to determine the effort

required to collect the relevant data from the technical

requirements specifications and the source code. 10

completed features (data points) were used for this

purpose. The values of the predictors (independent

variables) were obtained from the technical

requirements specifications, while the values of the

LOC (dependent variable) were obtained from the

source code. SLR analysis of this data was also

performed using IBM’s SPSS tool [13] to determine

the tentative relationship between each independent

predictor and LOC.

Another goal of this pilot study was to refine and

finalize the research design before proceeding with

full-fledged data collection (which included these 10

pilot study data points as well). Another potential

predictor of software size (LOC) which was

considered at this stage was the number of exception-

handling checks (nEHC). After scrutiny, nEHC was

ruled out for being redundant. It was found that nEHC

contained information already captured by two other

predictors (nTES and nSCN) identified earlier.

6. Data Collection

The technical requirements specifications and source

code of a total of 80 features belonging to three

different recently-completed industrial projects were

thoroughly analyzed. All three projects were classified

under the fintech category and were carried out by an

ISO-certified and PCI-compliant organization with a

presence in Pakistan. In all of these projects,

JavaScript was used to implement the front end, and

Java was used to implement the back end. Technical

requirements specifications were written by solution

architects and team leads using the information

contained in the customer requirements. Programmers

were responsible for writing the source code that

implemented these technical requirements

specifications. Table 5 provides a quick summary of

the dataset used in this research.

Table 5

Dataset overview

Total Projects 3

Total Features 80

Domain Fintech

Backend Code Language Java

Frontend Code Language JavaScript

Values of each of the eight predictors were

manually extracted from the technical requirements

specifications of the features. LOC values of both

frontend and backhand, on the other hand, were

extracted automatically using the “Statistic” plugin of

IntelliJ IDE [14]. Table 6 shows the descriptive

statistics of our complete dataset of 80 features.

Table 6

Descriptive statistics of the dataset

Variable Min Max Mean

nAPI 0 7 0.667

nTPL 0 2 0.416

nGUI 4 38 13.472

nIVC 3 84 36.028

nDBQ 0 14 6.556

nTES 2 9 5.444

nSCN 2 8 4.514

nSEC 2 4 3.000

LOC 994 6160 1806.819

7. Simple Linear Regression Analysis

The primary aim of employing SLR [15] is to uncover

the nature and strength of the relationship between

each independent predictor and software size (LOC).

This would allow us to determine how changes in one

may impact the other thereby facilitating better

understanding, prediction, and decision-making.

© Mehran University of Engineering and Technology 2025 6

 The first step in SLR analysis involved setting up

the regression model with each predictor (one by one)

as the independent variable and total LOC as the

response or dependent variable. IBM’s SPSS tool was

utilized to derive the estimated coefficients (namely,

the intercept and slope) which offered insights into the

relationship's direction and strength. These

coefficients are pivotal in understanding how changes

in the predictor variable influence variations in the

response variable. Additionally, the coefficient of

determination (R2) – a measure of goodness of fit –

was used to assess the model's overall effectiveness in

explaining the variability in the response variable

based on changes in the predictor.

Figures 2 – 9 depict the scatterplots (generated by

SPSS) showing the relationship between each

predictor and LOC. These scatterplots also contain the

regression lines as well as the model equations. Each

linear equation is of the form:

𝑦 = 𝑚𝑥 + 𝑐 Eq. (1)

where 'y' represents the response variable, 'x' the

predictor variable, 'm' the slope, and 'c' the intercept.

Fig. 2. Relationship with nAPI

Fig. 3. Relationship with nTPL

Fig. 4. Relationship with nGUI

Fig. 5. Relationship with nIVC

Fig. 6. Relationship with nDBQ

Fig. 7. Relationship with nTES

© Mehran University of Engineering and Technology 2025 7

Fig. 8. Relationship with nSEC

Fig. 9. Relationship with nSCN

R2 values are also shown on these scatterplots.

These values indicate the proportion of variability in

LOC that can be explained by each predictor. Some

predictors such as nGUI and nTPL demonstrate

moderate predictive power while others such as nTES

and nSCN show relatively weaker relationships with

LOC. The predictor nAPI has the highest R² value

(0.670) indicating a more substantial explanatory

impact as compared to the other predictors. Table 7

lists the R2 values of all eight predictors in descending

order. This answers RQ2.

Table 7

The predictive strength of each predictor

Sr# Predictor R2 Value

1 nAPI 0.670

2 nGUI 0.210

3 nTPL 0.207

4 nDBQ 0.175

5 nSEC 0.170

6 nIVC 0.166

7 nTES 0.009

8 nSCN 0.002

8. Multiple Linear Regression Analysis

Multiple Linear Regression (MLR) [16] is a vital tool

for unravelling the complex relationships between

several factors and a single outcome. It is a statistical

technique used to model the relationship between a

dependent variable and two or more independent

variables. It extends SLR (which deals with only one

independent variable) to handle situations where

multiple factors influence the outcome. The general

form of an MLR model is given by the following

equation:

Y = β0 + β1X1 + β2X2 + . . . + βiXi + ε Eq. (2)

where 'Y' represents the response variable, 'Xi' the

i-th predictor variable, “βi” represents the change in Y

for a one-unit change in Xi, and 'ε' is the difference

between the actual value of Y and the value of Y

predicted by the model.

Before building the MLR model, data pre-

processing is done to clean the dataset of outliers. A

commonly used statistical measure called Cook’s

Distance [17] is used to detect the outliers. SPSS

automatically calculates Cook’s Distance during the

execution of the analysis. Data points with a value

greater than 4/n (where n is the number of

observations, in our case n = 80) are typically

considered influential. High values of Cook's Distance

indicate that removing the data point would

significantly alter the regression coefficients or model

fit, suggesting that the observation has a substantial

impact on the analysis. In our case, 8 features were

identified as outliers and were removed from

subsequent analysis. The final model built using

forward stepwise multiple linear regression (FSMLR)

was, therefore, calibrated using 72 data points.

Fig. 10. Final Software Size Prediction Model Details

The equation below shows the final software size

(LOC) prediction model which has an adjusted R2

value of 0.818:

𝐿𝑂𝐶 = 1014.924 + (579.811 ∗ 𝑛𝐴𝑃𝐼) +

(30.088 ∗ 𝑛𝐺𝑈𝐼) Eq. (3)

© Mehran University of Engineering and Technology 2025 8

As is evident from this equation, adjusted R2 value,

and Fig. 10, only two – nAPI and nGUI – out of the

eight predictors together play a significant role in

accounting for most (80%+) of the variation in LOC.

The leanness and simplicity of this model offer a big

advantage to project managers who have relatively

less information at their disposal at the start of the

project.

Two commonly used accuracy metrics – MMRE

and PRED (25) [18] – were used to assess this model’s

performance. The MMRE value of this model is 0.19

indicating that, on average, there is around 20%

difference between the software size (LOC) predicted

by this model and the actual software size. PRED (25)

is 0.789 implying that almost 79% of the size values

estimated by this model are within 25% of the actual

size values. Thus, this model performs well with

respect to both accuracy metrics.

9. Model Validation

In predictive analysis, model validation is essential for

judging a model’s reliability and accuracy. K-fold

cross-validation is a widely used technique in machine

learning and statistical modeling for evaluating the

performance of predictive models [19]. Unlike

traditional validation methods that split the dataset

into a single training and test sets, k-fold cross-

validation divides the dataset into k subsets or "folds".

Each fold serves as both a training as well as a testing

set ensuring that every data point is used for both

training and validation. This validation approach

provides a more reliable estimate of model

performance by averaging the results obtained from

multiple iterations. Secondly, it helps to maximize the

use of available data by partitioning the dataset into

multiple folds.

We partitioned our dataset comprising 72 features

into 6 equal folds. Thus, each fold contained 12

different features. Since SPSS does not provide

complete automation of the entire k-fold validation

process, each of the 6 iterations was performed

separately. In each iteration, data in k-1 folds was

used for model training and the remaining data was

used for model testing. As a result, 6 different MLR-

based software size (LOC) prediction models were

generated and tested separately.

Table 8

K-fold cross-validation results

Fold # Model Equation Adjusted

R2

MMRE PRED

(25)

Fold 1 LOC=789.301 + (nAPI*506.985) + (nGUI*47.637) 0.882 0.3605 0.25

Fold 2 LOC=875.155 + (nAPI*702.844) + (nTES*78.152) + (nTPL*235.267) 0.886 0.4463 0.09

Fold 3 LOC=1074.04 + (nAPI*573.439) + (nGUI*26.381) 0.757 0.1629 0.92

Fold 4 LOC=1050.175 + (nAPI*579.344) + (nGUI*28.047) 0.809 0.1404 1.00

Fold 5 LOC=1031.969 + (nAPI*588.477) + (nGUI*28.648) 0.810 0.0676 1.00

Fold 6 LOC=1002.532 + (nAPI*582.315) + (nGUI*30.086) 0.811 0.0417 1.00

Fig. 11. K-Fold Cross-Validation Process

Fig. 11 shows a pictorial summary of the k-fold

cross-validation process while Table 8 presents its

results. These results help in addressing RQ3. The

average MMRE value across all 6 folds is 0.203

meaning that, on average, LOC predictions are off by

approximately 20% relative to the actual LOC values.

Similarly, the average PRED (25) value across all 6

folds is 0.708 meaning that, on average, nearly 71% of

the predicted LOC values are within 25% of the actual

LOC values. Thus, both average MMRE and average

PRED (25) values attest to the accuracy of our

proposed approach.

10. Threats to Validity

As with any research endeavor, there are potential

threats that may compromise the validity of our

results. One such threat is related to the external

validity of our research. It stems from the fact that we

© Mehran University of Engineering and Technology 2025 9

focus on a particular set of software projects belonging

to a certain domain (i.e. fintech) and implemented

using certain programming languages (i.e. JavaScript

and Java). The size estimation model presented here,

therefore, may not be applicable as it is to other types

of projects and implementation settings. Nonetheless,

the repeatable process documented in this research can

be used to build a software size estimation model for

any type of project undertaken in any setting.

The other main threat is related to the internal

validity of our results. Several measures were taken to

mitigate this threat. First, we did not rely on a single

source to identify our set of predictors. We consulted

human experts in addition to analyzing technical

documentation. Secondly, we tried to automate the

measurements where possible. For instance, the LOC

of all completed features was measured automatically

using the “Statistic” plugin of IntelliJ IDE.

Furthermore, multiple accuracy metrics (MMRE and

PRED (25)) were used to judge our model’s

performance.

11. Conclusions and Future Work

This research addresses the common problem of

inaccurate effort and cost estimation in software

development projects by building a software size

prediction model using information contained in

projects’ technical requirements specifications. The

final model is built using forward stepwise multiple

linear regression and is calibrated using a dataset of

more than 70 completed features of actual real-life

projects. Model assessment and validation results

indicate that this model is fairly accurate in predicting

software size (LOC) from just two predictors i.e.

number of API calls and number of GUI fields. This

lean and simple model is expected to assist software

managers in project planning, resource allocation, and

budget preparation.

This research can be extended in several different

directions. First and foremost, the repeatable model-

building process identified in this study can be used to

prepare size estimation models for other types of

projects representing a variety of domains,

implemented using different programming languages,

and deployed on different platforms (e.g. mobile, web,

desktop, etc.). Secondly, non-linear machine learning

techniques may also be explored for model building

using a bigger dataset. Last, but not the least, a GUI-

based user-friendly software tool can be built on top of

these different size prediction models to aid project

managers working on projects spanning different

domains and platforms.

12. References

[1] N. Nan and D. E. Harter, “Impact of Budget and

Schedule Pressure on Software Development

Cycle Time and Effort”, IEEE Transactions on

Software Engineering, vol. 35, no. 5, pp. 624-

637, Sept.-Oct. 2009, doi:

10.1109/TSE.2009.18.

[2] B. Curtis, H. Krasner, and N. Iscoe, “A field

study of the software design process for large

systems”, Communications of the ACM, vol.

31, no. 11, pp. 1268–1287, Nov. 1988, doi:

https://doi.org/10.1145/50087.50089.

[3] J. T. Dhas, “Importance of Software Sizing in

Software Project Management: A Study”,

Italian Journal of Pure and Applied

Mathematics, vol. 118, pp. 269–273, Mar. 2020

[4] B. Boehm, “Cost estimation with COCOMO

II”, ResearchGate, Nov. 14, 2002.

https://www.researchgate.net/publication/2286

00814_Cost_estimation_with_COCOMO_II

(accessed Mar. 08, 2025).

[5] D. Garmus, D.P. Herron “Function Point

Analysis: Measurement Practices for Successful

Software Projects”, Addison-Wesley

Information Technology Series, 2001.

[6] Y. Zheng, B. Wang, Y. Zheng, and L. Shi,

“Estimation of software projects effort based on

function point”, 2009 4th International

Conference on Computer Science & Education,

Jul. 2009, doi:

https://doi.org/10.1109/iccse.2009.5228317

[7] E. N. Regolin, G. A. de Souza, A. R. T. Pozo,

and S. R. Vergilio, “Exploring machine learning

techniques for software size estimation”, 23rd

International Conference of the Chilean

Computer Science Society, 2003. SCCC 2003.

Proceedings., Chillan, Chile, 2003, pp. 130-136,

doi: 10.1109/SCCC.2003.1245453.

[8] N. A. Zakaria, A. R. Ismail, A. Y. Ali, N. H.

Khalid, and N. Z. Abidin, “Software Project

Estimation with Machine Learning”,

International Journal of Advanced Computer

Science and Applications, vol. 12, no. 6, 2021.

doi:10.14569/ijacsa.2021.0120685

[9] Sharma and D. S. Kushwaha, “Estimation of

Software Development Effort from

Requirements Based Complexity”, Procedia

Technology, vol. 4, pp. 716–722, 2012, doi:

https://doi.org/10.1016/j.protcy.2012.05.116

[10] T. E. Ayyildiz and A. Koçyigit, “A Case Study

on the Utilization of Problem and Solution

https://doi.org/10.1145/50087.50089
https://doi.org/10.1109/iccse.2009.5228317
https://doi.org/10.1016/j.protcy.2012.05.116

© Mehran University of Engineering and Technology 2025 10

Domain Measures for Software Size

Estimation”, 2016 42th Euromicro Conference

on Software Engineering and Advanced

Applications (SEAA), Limassol, Cyprus, 2016,

pp. 108-111, doi: 10.1109/SEAA.2016.13.

[11] K. Lind and R. Heldal, “A practical approach to

size estimation of embedded software

components”, IEEE Transactions on Software

Engineering, vol. 38, no. 5, pp. 993–1007, Sep.

2012, doi: 10.1109/tse.2011.86.

[12] P. R. Hill, “Practical Software Project

Estimation: A Toolkit for Estimating Software

Development Effort & Duration”, First edition.

New York: McGrawHill Education, 2011.

Available:

https://www.accessengineeringlibrary.com/cont

ent/book/9780071717915

[13] IBM, “Downloading IBM SPSS Statistics

29”, www.ibm.com, Nov. 17, 2022.

https://www.ibm.com/support/pages/downl

oading-ibm-spss-statistics-29

[14] “Statistic - IntelliJ IDEs Plugin | Marketplace”,

JetBrains Marketplace, Dec. 27, 2023.

https://plugins.jetbrains.com/plugin/4509-

statistic

[15] B. C. Gupta, I. Guttman, and K. P. Jayalath,

“Simple Linear Regression Analysis”, Statistics

and Probability with Applications for Engineers

and Scientists using MINITAB, R and JMP,

John Wiley & Sons, Ltd, 2020, pp. 622–692.

doi:

https://doi.org/10.1002/9781119516651.ch15.

[16] B. C. Gupta, I. Guttman, and K. P. Jayalath,

“Multiple Linear Regression Analysis”,

Statistics and Probability with Applications for

Engineers and Scientists using MINITAB, R

and JMP, John Wiley & Sons, Ltd, 2020, pp.

693–756. doi:

https://doi.org/10.1002/9781119516651.ch16.

[17] R. D. Cook, “Detection of Influential

Observation in Linear Regression”,

Technometrics, vol. 42, no. 1, pp. 65–68, Feb.

2000, doi:

https://doi.org/10.1080/00401706.2000.104859

81.

[18] B. A. Kitchenham, L. M. Pickard, S. G.

MacDonell, and M. J. Shepperd, “What

accuracy statistics really measure”, IEE

Proceedings - Software, vol. 148, no. 3, p. 81,

2001, doi: https://doi.org/10.1049/ip-

sen:20010506.

[19] D. Berrar, “Cross-Validation”, Encyclopedia of

Bioinformatics and Computational Biology,

vol. 1, pp. 542–545, 2019, doi:

https://doi.org/10.1016/b978-0-12-809633-

8.20349-x

https://www.accessengineeringlibrary.com/content/book/9780071717915
https://www.accessengineeringlibrary.com/content/book/9780071717915
https://plugins.jetbrains.com/plugin/4509-statistic
https://plugins.jetbrains.com/plugin/4509-statistic
https://doi.org/10.1002/9781119516651.ch15
https://doi.org/10.1016/b978-0-12-809633-8.20349-x
https://doi.org/10.1016/b978-0-12-809633-8.20349-x

