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 This research aims to develop a predictive model to estimate the lines of code 

(LOC) of software projects using technical requirements specifications. It 

addresses the recurring issue of inaccurate effort and cost estimation in software 

development that often results in budget overruns and delays. This study includes 

a detailed analysis of a dataset comprising past real-life software projects. It 

focuses on extracting relevant predictors from projects' requirements written in 

technical and easily comprehensible natural language. To assess feasibility, a pilot 

study is conducted at the beginning. Then, Simple Linear Regression (SLR) is 

employed to determine the relative predictive strength of eight potential predictors 

identified earlier. The number of API calls is found to be the strongest independent 

predictor (R2 = 0.670) of LOC. The subsequent phase entails constructing a 

software size prediction model using Forward Stepwise Multiple Linear 

Regression (FSMLR). The adjusted R2 value of the final model indicates that two 

factors – the number of API calls and the number of GUI fields – account for more 

than 80% of the variation in code size (measured using LOC). Model validation 

is performed using k-fold cross-validation. Validation results are also promising. 

The average MMRE of all folds is 0.203 indicating that, on average, the model's 

predictions are off by approximately 20% relative to the actual values. The 

average PRED (25) is 0.708 implying that nearly 71% of predicted size values are 

within 25% of the actual size values. This model can help project managers in 

making better decisions regarding project management, budgeting, and 

scheduling. 

1. Introduction 

In the dynamic realm of software development, 

innovation races hand in hand with complexity. 

Conceiving, developing, and delivering successful 

software projects in such a dynamic and complex 

environment, requires effective project management. 

Effective project management, in turn, requires 

thorough planning, continuous monitoring, and 

intelligent resource allocation.  

The backbone of all software projects is an artifact 

called the project plan. The core of the project plan is 

the project schedule. This schedule is built around 

estimates of software size, effort, time, and cost. 

Therefore, the foundation of project management is 

estimation.  

 Since most real-life software projects are 

complicated, estimating the amount of effort, time, 

and resources needed to complete a project requires a 

methodical approach [1]. Furthermore, all such 

methodological approaches need a starting point 

which is provided by size estimation since software 

size is considered one of the most important 

determinants of project effort, duration, and 

staff/resources. Thus, regardless of whether the 

classical waterfall process or a modern agile process is 
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used, reliable software size estimation is crucial for 

developing a realistic project plan. 

 Software size, to a great extent, depends on the 

number and complexity of software features. 

Technical requirements specifications act as the basis 

for providing the details of the features required in the 

software that needs to be developed and maintained 

[2]. These technical requirements are available early 

in the software development life cycle (SDLC). Thus, 

the information contained in these technical 

specifications can be used for early software size 

estimation. 

Over the years, several software size and effort 

estimation techniques and models have been 

proposed. These include function point analysis 

(FPA), parametric modeling, and expert judgment [3]. 

Parametric software cost estimation models like 

COCOMO II [4] and functional sizing approaches like 

FPA [5] have been widely used for decades to estimate 

project effort and size [6]. Despite their widespread 

usage, these approaches and models exhibit some 

limitations in adapting to modern development 

scenarios and diverse project environments. The shift 

towards machine learning-based models has 

introduced a more adaptable and data-driven 

approach. These models, however, rely heavily on 

historical data, which potentially limits their 

applicability in cases of novel projects lacking 

substantial historical references [7].  

Software size is often measured in lines of code 

(LOC). As expected, there is no universal method, 

approach, or technique for LOC estimation that works 

for all projects. This is precisely because projects 

differ greatly in complexity, scale, and scope. Size 

estimation of complex real-life software projects often 

requires a more personalized approach. A size 

prediction model that incorporates project-specific 

information contained in the technical requirements 

specifications of a project may provide more accurate 

results. This study aims to build such a model. 

Data collection is one of the most important parts 

of this research. Technical requirements specifications 

of past real-life projects are used as a source. Data 

obtained from these specifications is analyzed to 

identify the factors that can help in predicting the size 

(LOC) of a project. First, the individual predictive 

strength of these factors is determined using simple 

linear regression (SLR). Then, forward stepwise 

multiple linear regression (FSMLR) is used to build 

and validate a size prediction model using the factors 

identified earlier. 

 The following three research questions (RQs) are 

addressed in this study: 

RQ1:  Which factors (identified from the technical 

requirements specifications) affect the 

variation in LOC for different software 

projects? 

RQ2:  What is the relative predictive strength (in 

terms of R2 value) of each factor in 

predicting LOC? 

RQ3:  How accurately can an FSMLR-based 

model built using the factors identified 

earlier predict the size (LOC) of a software 

project? 

The next section discusses previous work in this 

area. Section 3 presents a summary of our research 

methodology. Section 4 contains a detailed discussion 

of the factors identified as LOC predictors. Section 5 

summarizes our pilot study, while Section 6 describes 

our data collection. Sections 7 and 8 present and 

discuss the results of SLR and MLR, respectively. The 

results of model validation are summarized and 

discussed in Section 9. Section 10 outlines the threats 

to the validity of these results. Finally, Section 11 

highlights our main contributions and presents some 

directions for future work in this area. 

2. Related Work 

Machine learning (ML) algorithms enable computers 

to understand problems and produce effective and 

efficient solutions. Zakaria et al. [8] compared the 

effort estimation accuracy of four different ML 

algorithms i.e. Random Forest (RF), Linear 

Regression (LR), Regression Tree (RT), and Support 

Vector Machine (SVM). The effort prediction 

accuracy of these four ML algorithms was compared 

on four different datasets i.e. COCOMO NASA 1, 

COCOMO NASA 2, COCOMO81, and Kaushik et al., 

2012. SVM was found to give good results. Another 

important finding from their research was that not all 

attributes of the dataset were relevant for effort 

estimation. Only five attributes of the COCOMO 

datasets were found to be relevant. Our current 

research is similar to their research in the sense that 

our final size prediction model (made using FSMLR) 

uses a subset of the eight potential predictors identified 

earlier. However, the main difference between our 

work and theirs is that we focus on size estimation 

while their focus is on effort estimation. Another 

significant distinction is that, instead of depending on 

a pre-existing set of predictors like COCOMO model 

drivers, we find our own potential predictors. 

Sharma and Kushwaha [9] first proposed a new 

metric called Improved Requirement Based 

Complexity (IRBC) for quantifying the complexity of 

requirements documented in the software 
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requirements specification (SRS) of a software 

project. Later, they developed an approach for 

augmenting the original function points approach with 

IRBC to estimate the software development effort 

(SDE) of a software project. The results of this 

approach were also compared with other existing SDE 

techniques such as use case-based estimation.  Our 

research is similar to theirs in the sense that we also 

use requirements-related information for early 

estimation. One of the main differences, however, is 

that our focus is on size estimation instead of effort 

estimation. Secondly, we use technical requirements 

specifications instead of SRS as input. 

Ayyıldız and Koçyigit [10] studied the correlations 

between problem domain measures (specifically, the 

number of distinct nouns and verbs in requirements) 

and solution domain measures (specifically, the 

number of software classes and methods in object-

oriented software) to improve early software size 

estimation. They analyzed data from 12 commercial 

software projects to develop MLR-based estimation 

models for solution domain metrics based on problem 

domain metrics. The prediction accuracy of their 

models was found to be acceptable. Our research also 

focuses on early estimation. However, instead of using 

parts of speech (e.g., nouns and verbs) to predict 

design concepts (e.g., classes and methods), our model 

directly predicts size (LOC) using the information 

contained in the technical requirements specifications. 

Lind and Heldal [11] looked at the utility of using 

the COSMIC Functional Size Measurement (FSM) 

method [12] to estimate the implemented code size (in 

bytes) of embedded software components in the 

automotive industry. They found a strong correlation 

between the two. Like our approach, their approach 

can also be used for early size estimation. However, 

determining the COSMIC function points of a 

software application from a given requirements 

specification is a non-trivial exercise that requires 

prior training. On the other hand, prior training is not 

required when using our proposed size (LOC) 

estimation approach.  

Table 1 presents a summary of the past related 

works discussed earlier in this section. Apart from 

summarizing the main contributions of these works, 

this table also highlights their limitations and main 

differences from our work.

Table 1 

Summary of related work 

Sr# Title Author(s) Publication Year Main Contributions Limitations/ 

Differences 

1 Software Project 

Estimation with 

Machine Learning 

Zakaria et al. 2021 A comparative study of 4 

different ML algorithms 

using 4 different datasets.  

Not all attributes are 

relevant for effort 

estimation. 

Used pre-existing 

predictors (i.e. 

COCOMO model 

drivers). 

They are majorly 

focused on effort 

estimation instead of 

size estimation.  

2 A Case Study on the 

Utilization of 

Problem and Solution 

Domain Measures for 

Software Size 

Estimation 

Ayyıldız and 

Koçyigit 

2016 MLR-based estimation 

models for solution 

domain metrics based on 

problem domain metrics. 

Indirect estimation of 

software size in terms 

of the number of 

classes and methods 

instead of LOC. 

3 Estimation of 

Software 

Development Effort 

from Requirements 

Based Complexity 

Sharma and 

Kushwaha 

2012 Prediction of software 

development effort using 

the function points 

approach augmented with 

requirement-based 

complexity. 

Used SRS instead of 

technical requirements 

specifications. 

They are majorly 

focused on effort 

estimation instead of 

size estimation. 

4 A Practical Approach 

to Size Estimation of 

Embedded Software 

Components 

Lind and Heldal 2012 Correlation between 

COSMIC function points 

and implemented code 

size (in bytes) for 

Determining COSMIC 

function points from a 

given requirements 
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embedded software 

components. 

specification requires 

prior training. 

3. Research Methodology  

Fig. 1 provides a pictorial summary of our research 

methodology. The first step was to identify the factors 

(hereinafter called predictors) that could play an 

important role in predicting software size (LOC). This 

was followed by a pilot study aimed at gauging the 

magnitude of effort required in gathering data and 

refining the research design before proceeding further. 

The next main step was data collection, which 

involved extracting quantitative data from technical 

requirements specifications as well as the final code of 

real-life software projects. Once the data was 

collected, it was pre-processed to detect any outliers. 

Then, the data was analyzed using both SLR and 

FSMLR to determine the relative strength of each 

predictor individually and to build a software size 

(LOC) prediction model. Last, but not the least, the 

prediction accuracy of this size prediction model was 

assessed using commonly used accuracy metrics, and 

the model was validated using k-fold cross-validation. 

The following sections describe these main steps of 

our research in more detail. 

 

Fig. 1. Main Research Steps And Their Sequence 

4. Predictor Identification 

Table 2 lists all nine quantitative software size (LOC) 

predictors. 

Table 2 

Predictors 

Sr# Name Abbreviation 

1 Number of API Calls nAPI 

2 Number of Third-Party 

Libraries 

nTPL 

3 Number of GUI Fields nGUI 

4 Number of Input 

Validation Checks 

nIVC 

5 Number of Database 

Queries 

nDBQ 

6 Number of Total Execution 

Steps 

nTES 

7 Number of Scenarios nSCN 

8 Number of Security 

Checks 

nSEC 

 

9 Number of Exception 

Handling Checks 

nEHC 

These predictors were identified by analyzing 

technical requirements specifications of real-life 

projects and by holding discussions with experts and 

software development team members. This answers 

RQ1.  

Each predictor has been given a four-letter 

abbreviation for easy reference. nAPI refers to the 

application programming interfaces (APIs) that need 

to be developed while implementing a feature along 

with the wrapper services to call these APIs. nTPL is 

the count of the third-party libraries and helper classes 

(made available by the relevant language and/or 

framework) that are used to implement a feature. nGUI 

refers to the graphical user interface (GUI) fields that 

need to be made available on the screen for receiving 

inputs. nIVC corresponds to the number of input 

validation checks. Each GUI field used for input can 

be associated with several input validation checks. 

Table 3 lists the various input validation checks that 

may be required on any particular input GUI field. 

Table 3 

Input validation checks 

Sr# Name  

1 Min length 

2 Max length 

3 Min value 
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4 Max value 

5 Regex 

6 Mandatory 

7 Valid selected item 

8 File type (pdf, CSV, etc.) 

nDBQ captures all direct interactions with the 

database to perform certain operations without the 

help of any API. Every execution step required to 

implement a feature is counted in nTES, while all 

possible scenarios (success as well as failure) are 

counted in nSCN. nSEC refers to the security checks 

required to be implemented in a feature. Table 4 

provides a list of the different types of security checks 

that may be required. Finally, nEHC is the count of the 

exceptions that are handled in the code explicitly. All 

such exceptions result in displaying a user-friendly 

error message. 

Table 4 

Security checks 

Sr# Name  

1 SQL injection 

2 XSS 

3 CSRF 

4 File upload 

5 Access redirections 

6 Struts token validations 

7 Public flow authentications 

5. Pilot Study 

A pilot study was conducted to determine the effort 

required to collect the relevant data from the technical 

requirements specifications and the source code. 10 

completed features (data points) were used for this 

purpose. The values of the predictors (independent 

variables) were obtained from the technical 

requirements specifications, while the values of the 

LOC (dependent variable) were obtained from the 

source code. SLR analysis of this data was also 

performed using IBM’s SPSS tool [13] to determine 

the tentative relationship between each independent 

predictor and LOC. 

Another goal of this pilot study was to refine and 

finalize the research design before proceeding with 

full-fledged data collection (which included these 10 

pilot study data points as well). Another potential 

predictor of software size (LOC) which was 

considered at this stage was the number of exception-

handling checks (nEHC). After scrutiny, nEHC was 

ruled out for being redundant. It was found that nEHC 

contained information already captured by two other 

predictors (nTES and nSCN) identified earlier.  

6. Data Collection 

The technical requirements specifications and source 

code of a total of 80 features belonging to three 

different recently-completed industrial projects were 

thoroughly analyzed. All three projects were classified 

under the fintech category and were carried out by an 

ISO-certified and PCI-compliant organization with a 

presence in Pakistan. In all of these projects, 

JavaScript was used to implement the front end, and 

Java was used to implement the back end. Technical 

requirements specifications were written by solution 

architects and team leads using the information 

contained in the customer requirements. Programmers 

were responsible for writing the source code that 

implemented these technical requirements 

specifications. Table 5 provides a quick summary of 

the dataset used in this research. 

Table 5 

Dataset overview 

Total Projects 3 

Total Features 80 

Domain Fintech 

Backend Code Language Java 

Frontend Code Language JavaScript 

Values of each of the eight predictors were 

manually extracted from the technical requirements 

specifications of the features. LOC values of both 

frontend and backhand, on the other hand, were 

extracted automatically using the “Statistic” plugin of 

IntelliJ IDE [14]. Table 6 shows the descriptive 

statistics of our complete dataset of 80 features.  

Table 6 

Descriptive statistics of the dataset 

Variable Min Max Mean 

nAPI 0 7 0.667 

nTPL 0 2 0.416 

nGUI 4 38 13.472 

nIVC 3 84 36.028 

nDBQ 0 14 6.556 

nTES 2 9 5.444 

nSCN 2 8 4.514 

nSEC 2 4 3.000 

LOC 994 6160 1806.819 

7. Simple Linear Regression Analysis 

The primary aim of employing SLR [15] is to uncover 

the nature and strength of the relationship between 

each independent predictor and software size (LOC). 

This would allow us to determine how changes in one 

may impact the other thereby facilitating better 

understanding, prediction, and decision-making. 
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 The first step in SLR analysis involved setting up 

the regression model with each predictor (one by one) 

as the independent variable and total LOC as the 

response or dependent variable. IBM’s SPSS tool was 

utilized to derive the estimated coefficients (namely, 

the intercept and slope) which offered insights into the 

relationship's direction and strength. These 

coefficients are pivotal in understanding how changes 

in the predictor variable influence variations in the 

response variable. Additionally, the coefficient of 

determination (R2) – a measure of goodness of fit – 

was used to assess the model's overall effectiveness in 

explaining the variability in the response variable 

based on changes in the predictor.  

Figures 2 – 9 depict the scatterplots (generated by 

SPSS) showing the relationship between each 

predictor and LOC. These scatterplots also contain the 

regression lines as well as the model equations. Each 

linear equation is of the form: 

𝑦 = 𝑚𝑥 + 𝑐   Eq. (1) 

where 'y' represents the response variable, 'x' the 

predictor variable, 'm' the slope, and 'c' the intercept.   

  

Fig. 2. Relationship with nAPI 

  

Fig. 3. Relationship with nTPL 

 

Fig. 4. Relationship with nGUI 

  

Fig. 5. Relationship with nIVC 

 

Fig. 6. Relationship with nDBQ 

 

Fig. 7. Relationship with nTES 
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Fig. 8. Relationship with nSEC 

  

Fig. 9. Relationship with nSCN 

R2 values are also shown on these scatterplots. 

These values indicate the proportion of variability in 

LOC that can be explained by each predictor. Some 

predictors such as nGUI and nTPL demonstrate 

moderate predictive power while others such as nTES 

and nSCN show relatively weaker relationships with 

LOC. The predictor nAPI has the highest R² value 

(0.670) indicating a more substantial explanatory 

impact as compared to the other predictors. Table 7 

lists the R2 values of all eight predictors in descending 

order. This answers RQ2. 

Table 7 

The predictive strength of each predictor 

Sr# Predictor R2 Value 

1 nAPI 0.670 

2 nGUI 0.210 

3 nTPL 0.207 

4 nDBQ 0.175 

5 nSEC 0.170 

6 nIVC 0.166 

7 nTES 0.009 

8 nSCN 0.002 

8. Multiple Linear Regression Analysis 

Multiple Linear Regression (MLR) [16] is a vital tool 

for unravelling the complex relationships between 

several factors and a single outcome. It is a statistical 

technique used to model the relationship between a 

dependent variable and two or more independent 

variables. It extends SLR (which deals with only one 

independent variable) to handle situations where 

multiple factors influence the outcome. The general 

form of an MLR model is given by the following 

equation: 

Y =  β0 +  β1X1 +  β2X2 + . . . + βiXi +  ε   Eq. (2) 

where 'Y' represents the response variable, 'Xi' the 

i-th predictor variable, “βi” represents the change in Y 

for a one-unit change in Xi, and 'ε' is the difference 

between the actual value of Y and the value of Y 

predicted by the model.  

Before building the MLR model, data pre-

processing is done to clean the dataset of outliers. A 

commonly used statistical measure called Cook’s 

Distance [17] is used to detect the outliers. SPSS 

automatically calculates Cook’s Distance during the 

execution of the analysis. Data points with a value 

greater than 4/n (where n is the number of 

observations, in our case n = 80) are typically 

considered influential. High values of Cook's Distance 

indicate that removing the data point would 

significantly alter the regression coefficients or model 

fit, suggesting that the observation has a substantial 

impact on the analysis. In our case, 8 features were 

identified as outliers and were removed from 

subsequent analysis. The final model built using 

forward stepwise multiple linear regression (FSMLR) 

was, therefore, calibrated using 72 data points.

 

Fig. 10.  Final Software Size Prediction Model Details 

The equation below shows the final software size 

(LOC) prediction model which has an adjusted R2 

value of 0.818: 

𝐿𝑂𝐶 =  1014.924 + (579.811 ∗ 𝑛𝐴𝑃𝐼)  +

(30.088 ∗ 𝑛𝐺𝑈𝐼)           Eq. (3) 
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As is evident from this equation, adjusted R2 value, 

and Fig. 10, only two – nAPI and nGUI – out of the 

eight predictors together play a significant role in 

accounting for most (80%+) of the variation in LOC. 

The leanness and simplicity of this model offer a big 

advantage to project managers who have relatively 

less information at their disposal at the start of the 

project.  

Two commonly used accuracy metrics – MMRE 

and PRED (25) [18] – were used to assess this model’s 

performance. The MMRE value of this model is 0.19 

indicating that, on average, there is around 20% 

difference between the software size (LOC) predicted 

by this model and the actual software size. PRED (25) 

is 0.789 implying that almost 79% of the size values 

estimated by this model are within 25% of the actual 

size values. Thus, this model performs well with 

respect to both accuracy metrics. 

9. Model Validation 

In predictive analysis, model validation is essential for 

judging a model’s reliability and accuracy. K-fold 

cross-validation is a widely used technique in machine 

learning and statistical modeling for evaluating the 

performance of predictive models [19]. Unlike 

traditional validation methods that split the dataset 

into a single training and test sets, k-fold cross-

validation divides the dataset into k subsets or "folds". 

Each fold serves as both a training as well as a testing 

set ensuring that every data point is used for both 

training and validation. This validation approach 

provides a more reliable estimate of model 

performance by averaging the results obtained from 

multiple iterations. Secondly, it helps to maximize the 

use of available data by partitioning the dataset into 

multiple folds.   

We partitioned our dataset comprising 72 features 

into 6 equal folds. Thus, each fold contained 12 

different features.   Since SPSS does not provide 

complete automation of the entire k-fold validation 

process, each of the 6 iterations was performed 

separately.  In each iteration, data in k-1 folds was 

used for model training and the remaining data was 

used for model testing. As a result, 6 different MLR-

based software size (LOC) prediction models were 

generated and tested separately.

Table 8 

K-fold cross-validation results 

Fold # Model Equation Adjusted 

R2 

MMRE PRED 

(25) 

Fold 1 LOC=789.301 + (nAPI*506.985) + (nGUI*47.637) 0.882 0.3605 0.25 

Fold 2 LOC=875.155 + (nAPI*702.844) + (nTES*78.152) + (nTPL*235.267) 0.886 0.4463 0.09 

Fold 3 LOC=1074.04 + (nAPI*573.439) + (nGUI*26.381) 0.757 0.1629 0.92 

Fold 4 LOC=1050.175 + (nAPI*579.344) + (nGUI*28.047) 0.809 0.1404 1.00 

Fold 5 LOC=1031.969 + (nAPI*588.477) + (nGUI*28.648) 0.810 0.0676 1.00 

Fold 6 LOC=1002.532 + (nAPI*582.315) + (nGUI*30.086) 0.811 0.0417 1.00 

 

Fig. 11. K-Fold Cross-Validation Process 

Fig. 11 shows a pictorial summary of the k-fold 

cross-validation process while Table 8 presents its 

results. These results help in addressing RQ3. The 

average MMRE value across all 6 folds is 0.203 

meaning that, on average, LOC predictions are off by 

approximately 20% relative to the actual LOC values. 

Similarly, the average PRED (25) value across all 6 

folds is 0.708 meaning that, on average, nearly 71% of 

the predicted LOC values are within 25% of the actual 

LOC values. Thus, both average MMRE and average 

PRED (25) values attest to the accuracy of our 

proposed approach. 

10. Threats to Validity 

As with any research endeavor, there are potential 

threats that may compromise the validity of our 

results. One such threat is related to the external 

validity of our research. It stems from the fact that we 
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focus on a particular set of software projects belonging 

to a certain domain (i.e. fintech) and implemented 

using certain programming languages (i.e. JavaScript 

and Java). The size estimation model presented here, 

therefore, may not be applicable as it is to other types 

of projects and implementation settings. Nonetheless, 

the repeatable process documented in this research can 

be used to build a software size estimation model for 

any type of project undertaken in any setting.  

The other main threat is related to the internal 

validity of our results. Several measures were taken to 

mitigate this threat. First, we did not rely on a single 

source to identify our set of predictors. We consulted 

human experts in addition to analyzing technical 

documentation. Secondly, we tried to automate the 

measurements where possible. For instance, the LOC 

of all completed features was measured automatically 

using the “Statistic” plugin of IntelliJ IDE. 

Furthermore, multiple accuracy metrics (MMRE and 

PRED (25)) were used to judge our model’s 

performance.  

11. Conclusions and Future Work 

This research addresses the common problem of 

inaccurate effort and cost estimation in software 

development projects by building a software size 

prediction model using information contained in 

projects’ technical requirements specifications. The 

final model is built using forward stepwise multiple 

linear regression and is calibrated using a dataset of 

more than 70 completed features of actual real-life 

projects. Model assessment and validation results 

indicate that this model is fairly accurate in predicting 

software size (LOC) from just two predictors i.e. 

number of API calls and number of GUI fields. This 

lean and simple model is expected to assist software 

managers in project planning, resource allocation, and 

budget preparation.   

This research can be extended in several different 

directions. First and foremost, the repeatable model-

building process identified in this study can be used to 

prepare size estimation models for other types of 

projects representing a variety of domains, 

implemented using different programming languages, 

and deployed on different platforms (e.g. mobile, web, 

desktop, etc.).  Secondly, non-linear machine learning 

techniques may also be explored for model building 

using a bigger dataset. Last, but not the least, a GUI-

based user-friendly software tool can be built on top of 

these different size prediction models to aid project 

managers working on projects spanning different 

domains and platforms. 
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