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 Information is deteriorated by communication channels in several ways. The most 

notable is the addition of noise to the signal during transmission. Noise is reduced 

by the use of adaptive filters. Wiener, Steepest, and LMS are the most often 

utilized. While in hardware translation on ASICS and FPGAs, adaptive filters 

require more resources than straightforward FIR or IIR designs. Reducing 

resources is necessary to optimize the implementation. The literature on resource-

optimized filter implementation with multiplier optimization has been seen with 

a number of approaches. In this study, a new proposed shift and add multiplier is 

used to create an FPGA-based adaptive noise canceller based on the Steepest -

descent algorithm, and its performance is compared with a traditional version. The 

adaptive noise canceller is first simulated in MATLAB and then designed in 

Xilinx Virtex 7 FPGA using the ISE 14.7 tool, but the proposed architecture is too 

flexible to be carried out on any FPGA board. The suggested shift and add 

multiplier consume less FPGA resources than the original shift and add 

multiplication scheme alone, and in designing an adaptive noise canceller. The 

proposed method also performs better than the conventional approach in terms of 

maximum frequency achieved. Therefore, it can be inferred that the proposed shift 

and add multiplier approach can be adapted for resource-optimized 

implementation in the communication domain and in DSP applications. 

1. Introduction 

Data gets distorted during transmission via a 

communication channel in the result of channel 

disturbances [1]. Creating an inverse filter that 

responds reciprocally to the channel and lessens its 

effects is the way to dispose of it. The Steepest-descent 

algorithm and other adaptive filters are commonly 

used in the design of inverse filters. In certain 

instances, channel degradations and noise may both 

harm the data. To achieve dual functionality, an 

additional factor is introduced to the inverse filter for 

noise removal [2]. Fig.1 elaborates on the idea. 

 

Fig. 1.  Data Transmission over Communication Channel 

and Addition of Noise 

The user data, we send over the channel is 

represented by f(n) in Fig.1, and the channel impulse 

response h(n). The presence of some random noise I(n) 

could tack onto the signal. Thus g(n) at the receiver 

end may be represented as Eq. (1). 
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g(n) = f(n) ∗ h(n) + I(n)                           (1) 

In the time domain, f(n) and h(n) are convolved 

together, while convolution can occasionally prove 

difficult to handle. It is preferable to translate it into 

the multiplication in the frequency domain. The Eq. 

(2) is the frequency domain representation of Eq. (1). 

      

G(N) = F(N). H(N) + I(N)                        (2) 

We have the degraded signal G(N) at the receiving 

end. However, by rearranging Eq. (2), we may obtain 

our desired term as we need the original data F(N) 

from that degraded data. Equation (3) represents the 

required noise term.  

F(N) =
G(N)

H(N)
−  

I(N)

H(N)
                                (3) 

The first term, G(N)/H(N) is referred to as an 

inverse filter since it represents the ratio of the 

received data to the channel impulse response. We are 

more interested in determining the noise term because 

the tests may yield the channel behavior. Another term 

is the ratio of noise to channel impulse response.  

We must apply a Steepest-descent-based filter to 

adjust this noise term; this filter works better than an 

inverse filter since it takes into account both the 

statistical parameter of the noise (I(N)) and the 

degradation function (H(N)).  

The class of adaptive filters known as Steepest- 

descent modifies its weight according to the error 

value computed between the desired and received 

data. The desired data is a delayed copy of the input 

data that is sent before to the receiver to compensate 

for any potential delays caused by the channel [2].  

The error between the two sets of data (filtered and 

desired) can be computed using Eq. (4) where F^(N) 

represents the desired data and G(N) represents the 

filtered signal. 

E2 = E(G − F^)2               (4) 

Fig. 2 shows the block diagram for the traditional 

adaptive noise canceller to obtain the output data that 

is a replica of the desired data while minimizing the 

mean square error (the objective function).  

 

Fig. 2. Traditional Adaptive Noise Canceller 

ASICs and FPGAs may be used in the hardware-

based adaptive filter implementation. An FPGA-based 

design may significantly be impacted with the aid of 

using elements including deciding on the right FPGA 

boards, the automation tool (simulation) for Electronic 

Design (synthesis), and efficient programming 

techniques to go with resources efficient 

implementation.  However, as an emerging 

technology, FPGA can implement resource-ambitious 

algorithms with more optimization than ASIC [3]. The 

optimization of the algorithm yields a more compact 

design in terms of both the obtained frequency and 

area. 

The multiplier complexity [4], present in 

practically all DSP systems, including FIR, IIR, FFT, 

and others [5-7], is the primary problem when 

optimizing DSP algorithms. Various efforts have been 

undertaken to reduce multiplier complexity and create 

quick and effective DSP algorithms [8].  

Several well-known techniques published for 

optimizing the multiply and accumulate (MAC) 

portion include: Booth's Algorithm [9, 10], Wallace 

Tree Multiplier [11], DADDA Multipliers [12], and 

Vedic Multipliers [13]. 

Besides optimized multiplier design, various other 

DSP systems have been implemented using FPGA. 

Some of them are real-time signal processing [14], 

wireless communications [15], image and video 

processing [16], radar and sonar systems [17], 

Machine Learning and AI Acceleration [18], Sensor 

Data Processing [19], and other Emerging 

Applications. 

The authors have been focusing on hardware-based 

implementations of the multiplier optimization. Their 

work on the optimal implementation of multipliers is 

reported in [20-26].  One of the most recent 

publications in this domain is the FPGA-based 

implementation of modified shift and add multiplier 

[27]. This paper is an extension of the reported work 

that shows the optimized implementation of Steepest- 

descent-based adaptive noise canceller with modified 

shift and add multiplier. The performance of the 

proposed multiplier-based implementation is 

compared with traditional version. The adaptive noise 

canceller is first simulated in MATLAB and then 

designed in Xilinx Virtex 7 XC7vx330tffg1157 FPGA 

using ISE 14.7 tool. The proposed implementation, 

which utilizes a shift and add multiplier approach, 

requires fewer FPGA resources than traditional 

methods and demonstrates superior performance 

regarding achieved frequency. Consequently, it can be 

concluded that this approach is suitable for resource-
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optimized applications in communication and digital 

signal processing (DSP) fields. 

The paper continues as outlined below: the 

subsequent section delves into the architecture of the 

proposed shift and add multiplier, which is based on 

the FPGA architecture of the adaptive noise canceller. 

In the third section, simulation plots generated in 

MATLAB for adaptive noise cancellers are presented. 

The fourth section provides tables detailing the FPGA 

resource utilization for the proposed shift and add 

multiplier and its application in adaptive noise 

cancellers. Finally, the paper concludes in section five. 

2. Proposed Architecture of Modified Shift and 

Add Multiplier and Adaptive Noise Canceller 

When it comes to multiplication, the shift and add 

approach is among the simplest and most well-known. 

According to this strategy, the multiplicand's shifting 

or accumulation would be determined by the 

multiplier's LBS bit. This idea is demonstrated in Fig. 

3, where the addition is done for the LBS to be one and 

the shift is done for the LBS bit of the multiplier to be 

zero. Since the new value stays in the accumulator for 

every number of bits, its size must be 2N (M+N), 

resulting in the total delay being of N cycles [28]. 

 

Fig. 3. Block Diagram of Shift and Add Multiplier 

This approach is simple and easy to use, but it uses 

a lot of hardware because shift and add operations are 

used to implement the multipliers in logic [2]. Fig. 4 

reproduces the suggested 8 × 8-bit shift and add 

multiplier architecture. 

 

Fig. 4. Proposed Architecture of 8 × 8 Multiplier [27] 

In the proposed 8 × 8 shift and add multiplier rather 

than checking each multiplicand bit (producing N 

cycle delay) the multiplier is checked (reducing N-1 

cycles).  

Following the modular approach, first, a 3 × 8 

multiplier is designed consistent with the given 

algorithm and then two instants of it are called in the 

final implementation.  

i. In the 3×8 multiplier, the values of the multiplier 

are 0-7 (3-bits), and 0-255 for multiplicand (8-

bits). 

ii. For zero multiplier value, the net product for any 

multiplicand will be zero. 

iii. The produced output would be the same to 

multiplicand value for the case the multiplier is 

one.  

iv. For other remaining possible multiplier values the 

output would be generated as mentioned below: 

- Measure 1: Is it possible to write a multiplier 

in 2n representation? For true, add n zeros to 

the multiplicand.  

- Measure 2: Is it possible to write a multiplier 

in 2n +1 representation? For true, add n zeros 

to the multiplicand. and add with actual 

multiplicand value.  

- Measure 3: Is it possible to write a multiplier 

in 2n +2mrepresentation? For true, add n zeros 

to the multiplicand and add it with m zeros 

appended multiplicand.  

- Measure 4: Is it possible to write a multiplier 

in 2n -1 representation?  For true, add n zeros 

to the multiplicand and subtract from it the 

original multiplicand. 

The multiplier, designing this way reduces the 

resources and results in higher achieved frequency.  

Filters require frequent multiplication of received 

data and filter weights. Also, the adaptive filter 

weights update equation undergoes multiplications. 

When directly translated on hardware, the 

implementation may cause huge resource utilization, 

while if the optimized multiplier is used instead a 

general optimized design is achieved. 

The adaptive noise cancellers are implemented 

using FPGA with both the traditional and the 

suggested shift and add multiplier. Fig. 5 shows the 

FPGA-based design. 
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Fig.5. Adaptive Noise Canceller with Proposed Approach  

The Steepest-descent adaptive filter requires the 

desired data and the noisy data for the filter to work 

[29].  

One hundred samples of the desired data and the 

noisy input signal are stored in the FPGA's block-ram. 

The adaptive filter filters the noisy signal using the 

Steepest descent algorithm’s weight update equation, 

provided below.  

Autocorrelation matrix R, cross-correlation vector 

p, step-size µ, initial filter coefficients w (0), and 

maximum number of iterations N are the inputs. 

For n = 1, ..., N do 

w(n+1) = w(n) - µ[Rw-p]. 

end 

Output: The filter w (0) at different time instants n. 

3. Simulation Results of MATLAB  

The Steepest descent-based adaptive noise canceller is 

simulated in MATLAB, and the results produced are 

reported in various proceeding graphs.  

The adaptive filter is based on the error estimation 

between the filtered signal and the desired signal, it is 

required to produce the desired signal as a reference 

value at the receiver end.  The desired signal is 

generated from the same input sound value producing 

a delay of ten thousand samples that would 

compensate for the real-time delay the signal may 

observe.   

In MATLAB, eight thousand samples of the stored 

input voice signal, and the desired signal with 

amplitude between -0.8 and 0.8 root mean square 

(RMS) valu is plotted. The plots of the input and 

desired voice signals are represented in Fig.6 below. 

  

Fig. 6. 8000 Samples of Input and Desired Signal 

A random Gaussian noise is generated using the 

Gaussian noise generator in MATLAB and is added to 

the input noise to see the channel effect. The rms value 

of the noise is kept between 0 to 0.035.  Fig.7 shows 

the Gaussian noise and noisy input signal. The impact 

of noise may be seen in the input signal.  

 

Fig. 7. 8000 Samples of Input Noise and 8000 Samples of 

Noise Added Input Signal 

The noisy signal is filters through an adaptive filter 

for noise removal.  The output results are shown in 

Fig.8. 

  

Fig. 8. 8000 Samples of Error Signal and Filtered Signal  

The graph in Fig. 8 illustrates that the adaptive 

noise canceller based on the Steepest Descent method 

yields an output that matches the desired signal. To 

confirm this, an error graph comparing the filtered 

output to the desired signal has also been created. The 

resulting error value, measured in root mean square, is 

sufficiently low to deem the filter suitable for use in 

communication systems aimed at noise cancellation. 

4. FPGA-Based Implementation and Results  

The 8x8 shift and add multipliers utilizing the 

traditional method (Fig. 3) and the proposed method 

(Fig. 4) have been implemented on FPGA, and their 

architectures have been examined. The results are 

summarized in Table 1. Additionally, a comparison is 

conducted between the proposed approach and the 

conventional shift and add multiplier technique for the 

Steepest Descent-based adaptive noise canceller, with 

the outcomes detailed in Table 2. 
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Table 1 

Proposed and typical shift and add multiplier on FPGA 

Factors Proposed   

Architecture 

Conventional 

Architecture 
   

LUTS  85   147  

Adders/ 

 Subtractors 

2: [11-bit add/sub] 

3:[12-bit adder] 

7:[16-bit 

adders] 

Multiplexers  2[1-bit 2-to-1 

multiplexer] 

24[11-bit 2-to-1 ] 

8:[16-bit 2-

to-1 

multiplexer] 

Logic Levels  12 20 

Delay (ns) 2.163 3.830 

Frequency 

(MHz) 

462.235 261 

The architectural elements under comparison 

include lookup tables, memory, and macro statistics 

(which indicate additional utilized components), while 

the efficiency metrics encompass logic levels, delay, 

and frequency. In the independent implementation of 

the proposed shift-and-add multiplier, resource 

consumption is lower than that of the traditional 

multiplier, and the observed delay is minimal, leading 

to an optimal frequency achievement. 

Table 2  

FPGA-based results of the proposed and conventional shift 

and add multiplier-based noise canceller 

Factors Proposed 

Architecture 

Conventional 

Architecture 

LUTS  577 1012    

BROM  2 2 

Macro 

Statistics  

Add/Sub:23                

Registers:176 

 Mux:104 

Add/Sub:38          

 Registers:15                                

Mux:32 

Logic Levels  23 38 

Delay(ns) 4.623 5.62 

Frequency 

(MHz) 

216.293 177.81 

Two architectures of a two-tap adaptive filter for noise 

cancellation have been implemented on the Xilinx 

Virtex 7 FPGA to filter one hundred samples of a 

noisy signal stored in the block RAM. The first design 

utilizes a conventional shift-and-add multiplier, while 

the second design incorporates a proposed multiplier. 

The resource utilization and the achieved frequency 

for both designs are summarized in the table above. 

The lookup tables of the suggested design are 

nearly half than in the traditional design; additionally, 

the macro elements are reduced in the conventional 

method. When evaluating performance based on 

frequency, the proposed architecture performs well.  

Various graphs in the section below provide the 

visual representation of the results discussed above to 

have more clear idea of the resource utilization and the 

performance achieved.  

 

Fig. 9. Look Up Tables (LUTS) Consumed by The 

Convectional Multiplier (CM) and Proposed Multiplier 

(PM) Alone and in the Design of Adaptive Noise 

Canceller with a Proposed Multiplier (PNC) and The 

Conventional Multiplier (CNC) 

Fig. 9 illustrates that the count of lookup tables in 

the proposed multiplier and the adaptive noise 

canceller utilizing the suggested multiplier is lower 

than that of the traditional method. 

 

Fig. 10. Macro Statistics of The PM, CM, PNC and CNC 

In Fig. 10, Macro Statistics, which comprise 

adder/subtractors, registers, multiplexers, and block 

RAM, are illustrated for both methods separately and 

in the design of the adaptive noise canceller. The 

utilization of these resources in the proposed design 

exceeds that of the traditional method, necessitating 

further optimization. 

LUTS 

 

 

0

500

1000

1500

PM CM PNC CNC

PM

CM

PNC

CNC

Macro Statistics 

 

 

0

100

200

300

400

PM CM PNC CNC

PM

CM

PNC

CNC



© Mehran University of Engineering and Technology 2025 6 

 

Fig. 11. Logic Levels of The PM, CM, PNC and CNC 

The overall logic level in the design is illustrated in 

Fig. 11. The logic level is a performance parameter 

that has a direct effect on the delay and frequency of 

the entire system. The overall logic levels in the 

suggested designs are lower than anticipated. 

The delay, another performance parameter is 

illustrated in Fig. 12 below. It is observed that the 

proposed design has a lower delay than the traditional 

design, thus rendering the proposed method more 

resilient and preferable. 

 

Fig. 12. Delay Observed by PM, CM, PNC, and CNC in 

Nanoseconds 

 

Fig. 13. Maximum Frequency Achieved by PM, CM, 

PNC, and CNC in MHz 

The maximum achieved frequency of the suggested 

multiplier and adaptive noise canceller, as illustrated 

in Fig. 13, is considerably greater than that of the 

conventional design, thus making the design more 

feasible. 

These outcomes of the above results suggest that 

the proposed method could be utilized as an optimized 

solution for the hardware implementation of resource-

intensive adaptive filters. 

5. Conclusion 

This study utilizes a Xilinx Virtex 7 

XC7vx330tffg1157 board in conjunction with the ISE 

14.2 tool to develop an area-optimized version of an 

adaptive noise canceller that employs the Steepest 

Descent algorithm, with a newly proposed shift-and-

add multiplier. The performance of this 

implementation is subsequently compared with the 

traditional approach. 

A comparative analysis of different performance 

metrics indicates that the proposed shift and add 

multiplier consumes fewer FPGA resources compared 

to the conventional shift and add multiplier when 

utilized independently. This reduction in resource 

usage is similarly observed when the proposed 

multiplier is employed in the design of an adaptive 

noise canceller, demonstrating superior performance 

over traditional methods. 

The design is founded on the shift and add 

multiplier, which is relatively easy to implement in 

practice but incurs higher resource consumption and 

takes more cycles. This drawback of the multiplier 

restricts the design's application in systems that need 

greater speed and fewer resources, such as satellite 

communications or other high-speed wireless systems. 

Although the suggested shift and add multiplier 

somewhat addresses this issue, further efforts are 

required in future to achieve a level of optimization 

comparable to other fast multipliers. 
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