
© Mehran University of Engineering and Technology 2025 1

Mehran University Research Journal of Engineering and Technology

https://doi.org/10.22581/muet1982.3220

 2025, 44(2) 136-143

An optimized implementation of adaptive noise canceller based on proposed shift

and add multiplier

Aneela Pathan a, *, Khalil M. Zohaib a, Rizwan Aziz a, Adil Hussain Chandio a, Syed Haseeb Shah a

a Department of Electronic Engineering, The University of Larkana, Larkana, Pakistan

* Corresponding author: Aneela Pathan, Email: pathan_aneela@uolrk.edu.pk

Received: 13 November 2024, Accepted: 27 March 2025, Published: 01 April 2025

K E Y W O R D S A B S T R A C T

DSP

FPGA

MATLAB

Shift and add

Optimization

 Information is deteriorated by communication channels in several ways. The most

notable is the addition of noise to the signal during transmission. Noise is reduced

by the use of adaptive filters. Wiener, Steepest, and LMS are the most often

utilized. While in hardware translation on ASICS and FPGAs, adaptive filters

require more resources than straightforward FIR or IIR designs. Reducing

resources is necessary to optimize the implementation. The literature on resource-

optimized filter implementation with multiplier optimization has been seen with

a number of approaches. In this study, a new proposed shift and add multiplier is

used to create an FPGA-based adaptive noise canceller based on the Steepest -

descent algorithm, and its performance is compared with a traditional version. The

adaptive noise canceller is first simulated in MATLAB and then designed in

Xilinx Virtex 7 FPGA using the ISE 14.7 tool, but the proposed architecture is too

flexible to be carried out on any FPGA board. The suggested shift and add

multiplier consume less FPGA resources than the original shift and add

multiplication scheme alone, and in designing an adaptive noise canceller. The

proposed method also performs better than the conventional approach in terms of

maximum frequency achieved. Therefore, it can be inferred that the proposed shift

and add multiplier approach can be adapted for resource-optimized

implementation in the communication domain and in DSP applications.

1. Introduction

Data gets distorted during transmission via a

communication channel in the result of channel

disturbances [1]. Creating an inverse filter that

responds reciprocally to the channel and lessens its

effects is the way to dispose of it. The Steepest-descent

algorithm and other adaptive filters are commonly

used in the design of inverse filters. In certain

instances, channel degradations and noise may both

harm the data. To achieve dual functionality, an

additional factor is introduced to the inverse filter for

noise removal [2]. Fig.1 elaborates on the idea.

Fig. 1. Data Transmission over Communication Channel

and Addition of Noise

The user data, we send over the channel is

represented by f(n) in Fig.1, and the channel impulse

response h(n). The presence of some random noise I(n)

could tack onto the signal. Thus g(n) at the receiver

end may be represented as Eq. (1).

mailto:pathan_aneela@uolrk.edu.pk

© Mehran University of Engineering and Technology 2025 2

g(n) = f(n) ∗ h(n) + I(n) (1)

In the time domain, f(n) and h(n) are convolved

together, while convolution can occasionally prove

difficult to handle. It is preferable to translate it into

the multiplication in the frequency domain. The Eq.

(2) is the frequency domain representation of Eq. (1).

G(N) = F(N). H(N) + I(N) (2)

We have the degraded signal G(N) at the receiving

end. However, by rearranging Eq. (2), we may obtain

our desired term as we need the original data F(N)

from that degraded data. Equation (3) represents the

required noise term.

F(N) =
G(N)

H(N)
−

I(N)

H(N)
 (3)

The first term, G(N)/H(N) is referred to as an

inverse filter since it represents the ratio of the

received data to the channel impulse response. We are

more interested in determining the noise term because

the tests may yield the channel behavior. Another term

is the ratio of noise to channel impulse response.

We must apply a Steepest-descent-based filter to

adjust this noise term; this filter works better than an

inverse filter since it takes into account both the

statistical parameter of the noise (I(N)) and the

degradation function (H(N)).

The class of adaptive filters known as Steepest-

descent modifies its weight according to the error

value computed between the desired and received

data. The desired data is a delayed copy of the input

data that is sent before to the receiver to compensate

for any potential delays caused by the channel [2].

The error between the two sets of data (filtered and

desired) can be computed using Eq. (4) where F^(N)

represents the desired data and G(N) represents the

filtered signal.

E2 = E(G − F^)2 (4)

Fig. 2 shows the block diagram for the traditional

adaptive noise canceller to obtain the output data that

is a replica of the desired data while minimizing the

mean square error (the objective function).

Fig. 2. Traditional Adaptive Noise Canceller

ASICs and FPGAs may be used in the hardware-

based adaptive filter implementation. An FPGA-based

design may significantly be impacted with the aid of

using elements including deciding on the right FPGA

boards, the automation tool (simulation) for Electronic

Design (synthesis), and efficient programming

techniques to go with resources efficient

implementation. However, as an emerging

technology, FPGA can implement resource-ambitious

algorithms with more optimization than ASIC [3]. The

optimization of the algorithm yields a more compact

design in terms of both the obtained frequency and

area.

The multiplier complexity [4], present in

practically all DSP systems, including FIR, IIR, FFT,

and others [5-7], is the primary problem when

optimizing DSP algorithms. Various efforts have been

undertaken to reduce multiplier complexity and create

quick and effective DSP algorithms [8].

Several well-known techniques published for

optimizing the multiply and accumulate (MAC)

portion include: Booth's Algorithm [9, 10], Wallace

Tree Multiplier [11], DADDA Multipliers [12], and

Vedic Multipliers [13].

Besides optimized multiplier design, various other

DSP systems have been implemented using FPGA.

Some of them are real-time signal processing [14],

wireless communications [15], image and video

processing [16], radar and sonar systems [17],

Machine Learning and AI Acceleration [18], Sensor

Data Processing [19], and other Emerging

Applications.

The authors have been focusing on hardware-based

implementations of the multiplier optimization. Their

work on the optimal implementation of multipliers is

reported in [20-26]. One of the most recent

publications in this domain is the FPGA-based

implementation of modified shift and add multiplier

[27]. This paper is an extension of the reported work

that shows the optimized implementation of Steepest-

descent-based adaptive noise canceller with modified

shift and add multiplier. The performance of the

proposed multiplier-based implementation is

compared with traditional version. The adaptive noise

canceller is first simulated in MATLAB and then

designed in Xilinx Virtex 7 XC7vx330tffg1157 FPGA

using ISE 14.7 tool. The proposed implementation,

which utilizes a shift and add multiplier approach,

requires fewer FPGA resources than traditional

methods and demonstrates superior performance

regarding achieved frequency. Consequently, it can be

concluded that this approach is suitable for resource-

© Mehran University of Engineering and Technology 2025 3

optimized applications in communication and digital

signal processing (DSP) fields.

The paper continues as outlined below: the

subsequent section delves into the architecture of the

proposed shift and add multiplier, which is based on

the FPGA architecture of the adaptive noise canceller.

In the third section, simulation plots generated in

MATLAB for adaptive noise cancellers are presented.

The fourth section provides tables detailing the FPGA

resource utilization for the proposed shift and add

multiplier and its application in adaptive noise

cancellers. Finally, the paper concludes in section five.

2. Proposed Architecture of Modified Shift and

Add Multiplier and Adaptive Noise Canceller

When it comes to multiplication, the shift and add

approach is among the simplest and most well-known.

According to this strategy, the multiplicand's shifting

or accumulation would be determined by the

multiplier's LBS bit. This idea is demonstrated in Fig.

3, where the addition is done for the LBS to be one and

the shift is done for the LBS bit of the multiplier to be

zero. Since the new value stays in the accumulator for

every number of bits, its size must be 2N (M+N),

resulting in the total delay being of N cycles [28].

Fig. 3. Block Diagram of Shift and Add Multiplier

This approach is simple and easy to use, but it uses

a lot of hardware because shift and add operations are

used to implement the multipliers in logic [2]. Fig. 4

reproduces the suggested 8 × 8-bit shift and add

multiplier architecture.

Fig. 4. Proposed Architecture of 8 × 8 Multiplier [27]

In the proposed 8 × 8 shift and add multiplier rather

than checking each multiplicand bit (producing N

cycle delay) the multiplier is checked (reducing N-1

cycles).

Following the modular approach, first, a 3 × 8

multiplier is designed consistent with the given

algorithm and then two instants of it are called in the

final implementation.

i. In the 3×8 multiplier, the values of the multiplier

are 0-7 (3-bits), and 0-255 for multiplicand (8-

bits).

ii. For zero multiplier value, the net product for any

multiplicand will be zero.

iii. The produced output would be the same to

multiplicand value for the case the multiplier is

one.

iv. For other remaining possible multiplier values the

output would be generated as mentioned below:

- Measure 1: Is it possible to write a multiplier

in 2n representation? For true, add n zeros to

the multiplicand.

- Measure 2: Is it possible to write a multiplier

in 2n +1 representation? For true, add n zeros

to the multiplicand. and add with actual

multiplicand value.

- Measure 3: Is it possible to write a multiplier

in 2n +2mrepresentation? For true, add n zeros

to the multiplicand and add it with m zeros

appended multiplicand.

- Measure 4: Is it possible to write a multiplier

in 2n -1 representation? For true, add n zeros

to the multiplicand and subtract from it the

original multiplicand.

The multiplier, designing this way reduces the

resources and results in higher achieved frequency.

Filters require frequent multiplication of received

data and filter weights. Also, the adaptive filter

weights update equation undergoes multiplications.

When directly translated on hardware, the

implementation may cause huge resource utilization,

while if the optimized multiplier is used instead a

general optimized design is achieved.

The adaptive noise cancellers are implemented

using FPGA with both the traditional and the

suggested shift and add multiplier. Fig. 5 shows the

FPGA-based design.

© Mehran University of Engineering and Technology 2025 4

Fig.5. Adaptive Noise Canceller with Proposed Approach

The Steepest-descent adaptive filter requires the

desired data and the noisy data for the filter to work

[29].

One hundred samples of the desired data and the

noisy input signal are stored in the FPGA's block-ram.

The adaptive filter filters the noisy signal using the

Steepest descent algorithm’s weight update equation,

provided below.

Autocorrelation matrix R, cross-correlation vector

p, step-size µ, initial filter coefficients w (0), and

maximum number of iterations N are the inputs.

For n = 1, ..., N do

w(n+1) = w(n) - µ[Rw-p].

end

Output: The filter w (0) at different time instants n.

3. Simulation Results of MATLAB

The Steepest descent-based adaptive noise canceller is

simulated in MATLAB, and the results produced are

reported in various proceeding graphs.

The adaptive filter is based on the error estimation

between the filtered signal and the desired signal, it is

required to produce the desired signal as a reference

value at the receiver end. The desired signal is

generated from the same input sound value producing

a delay of ten thousand samples that would

compensate for the real-time delay the signal may

observe.

In MATLAB, eight thousand samples of the stored

input voice signal, and the desired signal with

amplitude between -0.8 and 0.8 root mean square

(RMS) valu is plotted. The plots of the input and

desired voice signals are represented in Fig.6 below.

Fig. 6. 8000 Samples of Input and Desired Signal

A random Gaussian noise is generated using the

Gaussian noise generator in MATLAB and is added to

the input noise to see the channel effect. The rms value

of the noise is kept between 0 to 0.035. Fig.7 shows

the Gaussian noise and noisy input signal. The impact

of noise may be seen in the input signal.

Fig. 7. 8000 Samples of Input Noise and 8000 Samples of

Noise Added Input Signal

The noisy signal is filters through an adaptive filter

for noise removal. The output results are shown in

Fig.8.

Fig. 8. 8000 Samples of Error Signal and Filtered Signal

The graph in Fig. 8 illustrates that the adaptive

noise canceller based on the Steepest Descent method

yields an output that matches the desired signal. To

confirm this, an error graph comparing the filtered

output to the desired signal has also been created. The

resulting error value, measured in root mean square, is

sufficiently low to deem the filter suitable for use in

communication systems aimed at noise cancellation.

4. FPGA-Based Implementation and Results

The 8x8 shift and add multipliers utilizing the

traditional method (Fig. 3) and the proposed method

(Fig. 4) have been implemented on FPGA, and their

architectures have been examined. The results are

summarized in Table 1. Additionally, a comparison is

conducted between the proposed approach and the

conventional shift and add multiplier technique for the

Steepest Descent-based adaptive noise canceller, with

the outcomes detailed in Table 2.

© Mehran University of Engineering and Technology 2025 5

Table 1

Proposed and typical shift and add multiplier on FPGA

Factors Proposed

Architecture

Conventional

Architecture

LUTS 85 147

Adders/

 Subtractors

2: [11-bit add/sub]

3:[12-bit adder]

7:[16-bit

adders]

Multiplexers 2[1-bit 2-to-1

multiplexer]

24[11-bit 2-to-1]

8:[16-bit 2-

to-1

multiplexer]

Logic Levels 12 20

Delay (ns) 2.163 3.830

Frequency

(MHz)

462.235 261

The architectural elements under comparison

include lookup tables, memory, and macro statistics

(which indicate additional utilized components), while

the efficiency metrics encompass logic levels, delay,

and frequency. In the independent implementation of

the proposed shift-and-add multiplier, resource

consumption is lower than that of the traditional

multiplier, and the observed delay is minimal, leading

to an optimal frequency achievement.

Table 2

FPGA-based results of the proposed and conventional shift

and add multiplier-based noise canceller

Factors Proposed

Architecture

Conventional

Architecture

LUTS 577 1012

BROM 2 2

Macro

Statistics

Add/Sub:23

Registers:176

 Mux:104

Add/Sub:38

 Registers:15

Mux:32

Logic Levels 23 38

Delay(ns) 4.623 5.62

Frequency

(MHz)

216.293 177.81

Two architectures of a two-tap adaptive filter for noise

cancellation have been implemented on the Xilinx

Virtex 7 FPGA to filter one hundred samples of a

noisy signal stored in the block RAM. The first design

utilizes a conventional shift-and-add multiplier, while

the second design incorporates a proposed multiplier.

The resource utilization and the achieved frequency

for both designs are summarized in the table above.

The lookup tables of the suggested design are

nearly half than in the traditional design; additionally,

the macro elements are reduced in the conventional

method. When evaluating performance based on

frequency, the proposed architecture performs well.

Various graphs in the section below provide the

visual representation of the results discussed above to

have more clear idea of the resource utilization and the

performance achieved.

Fig. 9. Look Up Tables (LUTS) Consumed by The

Convectional Multiplier (CM) and Proposed Multiplier

(PM) Alone and in the Design of Adaptive Noise

Canceller with a Proposed Multiplier (PNC) and The

Conventional Multiplier (CNC)

Fig. 9 illustrates that the count of lookup tables in

the proposed multiplier and the adaptive noise

canceller utilizing the suggested multiplier is lower

than that of the traditional method.

Fig. 10. Macro Statistics of The PM, CM, PNC and CNC

In Fig. 10, Macro Statistics, which comprise

adder/subtractors, registers, multiplexers, and block

RAM, are illustrated for both methods separately and

in the design of the adaptive noise canceller. The

utilization of these resources in the proposed design

exceeds that of the traditional method, necessitating

further optimization.

LUTS

0

500

1000

1500

PM CM PNC CNC

PM

CM

PNC

CNC

Macro Statistics

0

100

200

300

400

PM CM PNC CNC

PM

CM

PNC

CNC

© Mehran University of Engineering and Technology 2025 6

Fig. 11. Logic Levels of The PM, CM, PNC and CNC

The overall logic level in the design is illustrated in

Fig. 11. The logic level is a performance parameter

that has a direct effect on the delay and frequency of

the entire system. The overall logic levels in the

suggested designs are lower than anticipated.

The delay, another performance parameter is

illustrated in Fig. 12 below. It is observed that the

proposed design has a lower delay than the traditional

design, thus rendering the proposed method more

resilient and preferable.

Fig. 12. Delay Observed by PM, CM, PNC, and CNC in

Nanoseconds

Fig. 13. Maximum Frequency Achieved by PM, CM,

PNC, and CNC in MHz

The maximum achieved frequency of the suggested

multiplier and adaptive noise canceller, as illustrated

in Fig. 13, is considerably greater than that of the

conventional design, thus making the design more

feasible.

These outcomes of the above results suggest that

the proposed method could be utilized as an optimized

solution for the hardware implementation of resource-

intensive adaptive filters.

5. Conclusion

This study utilizes a Xilinx Virtex 7

XC7vx330tffg1157 board in conjunction with the ISE

14.2 tool to develop an area-optimized version of an

adaptive noise canceller that employs the Steepest

Descent algorithm, with a newly proposed shift-and-

add multiplier. The performance of this

implementation is subsequently compared with the

traditional approach.

A comparative analysis of different performance

metrics indicates that the proposed shift and add

multiplier consumes fewer FPGA resources compared

to the conventional shift and add multiplier when

utilized independently. This reduction in resource

usage is similarly observed when the proposed

multiplier is employed in the design of an adaptive

noise canceller, demonstrating superior performance

over traditional methods.

The design is founded on the shift and add

multiplier, which is relatively easy to implement in

practice but incurs higher resource consumption and

takes more cycles. This drawback of the multiplier

restricts the design's application in systems that need

greater speed and fewer resources, such as satellite

communications or other high-speed wireless systems.

Although the suggested shift and add multiplier

somewhat addresses this issue, further efforts are

required in future to achieve a level of optimization

comparable to other fast multipliers.

6. References

[1] N. K. Yadav, A. Dhawan, M. Tiwari, and S. K.

Jha, "Modified Model of RLS Adaptive Filter

for Noise Cancellation”, Circuits, Systems, and

Signal Processing, pp. 1-23, 2024.

[2] A. Pathan, "A Novel Approach Toward

Algorithm Architecture Co-Optimization for the

Application of Adaptive Noise Cancellation for

Wireless Communication”, Sukkur IBA Journal

of Computing and Mathematical Sciences, vol.

7, pp. 51-59, 2023.

[3] J. A. Belloch, G. León, J. M. Badía, A. Lindoso,

and E. San Millan, "Evaluating the

computational performance of the xilinx

ultrascale+ eg heterogeneous mpsoc”, The

© Mehran University of Engineering and Technology 2025 7

Journal of Supercomputing, vol. 77, pp. 2124-

2137, 2021.

[4] A. Boutros and V. Betz, "FPGA architecture:

Principles and progression”, IEEE Circuits and

Systems Magazine, vol. 21, pp. 4-29, 2021.

[5] M. H. Rais, "Efficient hardware realization of

truncated multipliers using FPGA”,

International Journal of Applied Science, vol. 5,

pp. 124-128, 2009.

[6] M. Boulasikis, M. Birbas, N. Tsafas, and N.

Kanakaris, "Efficient Utilization of FPGA

Multipliers for Convolutional Neural

Networks”, 2021 10th International Conference

on Modern Circuits and Systems Technologies

(MOCAST), 2021, pp. 1-5.

[7] T. Memon and P. Beckett, "The impact of

alternative encoding techniques on field

programmable gate array implementation of

sigma-delta modulated ternary finite impulse

response filters”, Australian Journal of

Electrical and Electronics Engineering, vol. 10,

pp. 107-116, 2013.

[8] S. Ullah, S. Rehman, M. Shafique, and A.

Kumar, "High-performance accurate and

approximate multipliers for FPGA-based

hardware accelerators”, IEEE Transactions on

Computer-Aided Design of Integrated Circuits

and Systems, vol. 41, pp. 211-224, 2021.

[9] H. Wu and X. Gao, "Efficient multiplier and

FPGA implementation for NTRU prime”, 2021

IEEE Canadian Conference on Electrical and

Computer Engineering (CCECE), 2021, pp. 1-5.

[10] K. VAMSI, "COMPARATIVE ANALYSIS OF

VARIOUS TYPES OF MULTIPLIERS FOR

EFFECTIVE LOW POWER AND TIME."

[11] C. WALLACE, "A Suggestion for a FAST

Multipliers”, IEEE Trans. on Computers, vol.

19, pp. 153-157, 1970.

[12] L. Dadda, Some schemes for parallel

multipliers: IEEE Computer Society Press,

1990.

[13] S. Jagadguru and S. B. K. T. Maharaja, "Vedic

Mathematics: Sixteen Simple Mathematical

Formulae from the Veda”, 2009.

[14] X. Liu, C. Jiang, S. Yang, B. Zhu, and Z. Zhao,

"Design and Implementation of Real-time

Signal Processing Heterogeneous System for

Unmanned Platform”, 2023 8th International

Conference on Intelligent Computing and

Signal Processing (ICSP), 2023, pp. 340-345.

[15] J. Jin, Q. Shang, H. Zhang, and H. Lu, "FPGA-

based adaptive rate-reduced visible light

Ethernet communication system”, Optics

Continuum, vol. 4, pp. 522-534, 2025.

[16] T. Prabu and K. Srinivasan, "Design and

Implementation of High-Performance FPGA

Accelerator for Non-Separable Discrete Fourier

Transform Optimizing Real-Time Image and

Video Processing”, Journal of Nanoelectronics

and Optoelectronics, vol. 19, pp. 843-856, 2024.

[17] R. Wen, H. Zhang, and L. Xu, "An Efficient

Dynamic Engineering Implementation

Architecture for MIMO Radar System”, Remote

Sensing, vol. 17, p. 832, 2025.

[18] A. Mouri Zadeh Khaki and A. Choi,

"Optimizing Deep Learning Acceleration on

FPGA for Real-Time and Resource-Efficient

Image Classification”, Applied Sciences, vol.

15, p. 422, 2025.

[19] M. Vaithianathan, S. Udkar, D. Roy, M. Reddy,

and S. Rajasekaran, "FPGA Design for

Multimodal Sensor Data Fusion in Autonomous

Robots”, 2024 International Conference on

Sustainable Communication Networks and

Application (ICSCNA), 2024, pp. 237-242.

[20] A. Pathan, T. D. Memon, S. Keerio, and I. H.

Kalwar, "FPGA Based performance analysis of

multiplier policies for FIR filter”, 2016

International Conference on Advances in

Electrical, Electronic and Systems Engineering

(ICAEES), 2016, pp. 17-20.

[21] T. D. Memon and A. Pathan, "An approach to

LUT based multiplier for short word length DSP

systems”, 2018 International Conference on

Signals and Systems (ICSigSys), 2018, pp. 276-

280.

[22] A. Pathan and T. D. Memon, "An optimised 3×

3 shift and add multiplier on FPGA”, 2017 14th

International Bhurban Conference on Applied

Sciences and Technology (IBCAST), 2017, pp.

346-350.

[23] A. Pathan, T. D. Memon, F. K. Sohu, and M. A.

Rajput, "Analysis of existing and proposed 3-bit

and multi-bit multiplier algorithms for FIR

filters and adaptive channel equalizers on

FPGA”, Quaid-E-Awam University Research

Journal of Engineering, Science & Technology,

Nawabshah., vol. 19, pp. 81-89, 2021.

[24] A. Pathan, T. D. Memon, and S. Memon, "A

carry-look ahead adder based floating-point

multiplier for adaptive filter applications”,

© Mehran University of Engineering and Technology 2025 8

International Journal of Computing and Digital

Systems, vol. 7, pp. 95-102, 2018.

[25] A. Pathan, R. Balal, T. D. Memon, and S. A.

Memon, "Analysis of booth multiplier based

conventional and short word length FIR filter”,

Mehran University Research Journal of

Engineering & Technology, vol. 37, pp. 595-

602, 2018.

[26] A. Pathan, T. D. Memon, and F. Sohu, "A 3-

Input Lookup Table Based Signed Multiplier

For DSP Systems”, Complement, vol. 7, p.

0111.

[27] A. Pathan, A. H. Chandio, and R. Aziz, "An

Optimization in Conventional Shift &Add

Multiplier for Area-Efficient Implementation on

FPGA”, 2022 International Conference on

Emerging Technologies in Electronics,

Computing and Communication (ICETECC),

2022, pp. 1-6.

[28] S. Mirzaei, A. Hosangadi, and R. Kastner,

"FPGA implementation of high speed FIR

filters using add and shift method”, 2006

International Conference on Computer Design,

2006, pp. 308-313.

[29] T. D. Memon, A. Pathan, and P. Beckett,

"FPGA based implementation and area

performance analysis of sigma-delta modulated

steepest algorithm for channel equalization”,

2018 12th International conference on signal

processing and communication Systems

(ICSPCS), 2018, pp. 1-6.

