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 Due to the tremendous value embedded in big educational data, numerous 

research institutes have collected large volumes of student behavioral data. To 

fully utilize the underlying values, the collected data may be shared with third 

parties, such as worldwide intelligent data experts. However, this may pose 

privacy risks to data owners, even though the data collectors usually anonymize 

the data before crowdsourcing. To demonstrate that anonymization alone is 

insufficient to protect user privacy, we conducted an experimental study using 

offline and online behavioral traces collected through campus cards and 

smartphones. Our study demonstrates that a student’s identity can be identified 

with high probability based on anonymized behavior payment traces. The analysis 

of results demonstrates that only ten features, i.e., Transmission Control Protocol 

(TCP), synchronization attempts, content length, downlink traffic, last 

acknowledgement packet delay, uplink traffic, cell ID, base station ID, day, hour 

(offline payment, time) day, hour, minute (online payment time), and point of sale 

ID (POS_ID) are sufficient to uniquely identify an individual. Five supervised 

standard learning algorithm classifiers have been utilized to predict the user 

identity i.e., Extra Tree, Bagging, Decision Tree, Nearest Neighbor (KNN), and 

Random Forest Tree classifiers. The evaluation results showed that the achieved 

accuracy reached 99.99%, 99.95%, 99.02%, 98.84%, and 99.56%, respectively. 

1. Introduction 

With the rapid growth of big data, educational data has 

garnered significant attention from research 

communities [1, 2]. The existing literature has 

revealed that the utilization of big educational data can 

help student management [3], student behavior 

monitoring [4], student performance improvement [5],  

providing mobile App recommendations [6], student 

mental health promotion [7], teaching skill 

enhancement [8], public health improvement [9], and 

friend circle identification [10]. 

In the area of big educational data, there are a few 

institutes that collect various educational big data, 

such as reality mining [11] and device analyzer [12]. 

Although data collectors have extracted valuable 

insights, such as location tracking [13] and behavioral 

diversity over time [14], their findings rely on sharing 

these datasets with third parties to maximize their 

utility. To fully utilize these big educational data, 

those data collectors usually share the collected 

datasets with third parties [15].  Although these 

datasets are anonymized before sharing, they may still 

pose privacy risks. One common method of data 

collection in this domain is crowdsourcing, which 

involves collecting large volumes of user-generated 

data from multiple individuals, often through online or 

institutional systems, for research and analysis [16]. In 

the context of this study, educational institutions 

collect behavioral data from students via campus cards 
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and smartphones, then anonymize and share these 

datasets with third parties, such as data analysts or 

researchers. Machine learning models can analyze 

behavioral patterns and successfully identify 

individuals, raising concerns about data security and 

the effectiveness of current anonymization techniques.  

To illustrate that anonymized big educational data 

can still result in privacy leakage, we conducted 

experiments on an anonymized dataset. Furthermore, 

the risk of privacy leakage increases when different 

types of educational data are integrated. Privacy 

leakage occurs when personal or sensitive information 

is unintentionally exposed, even after anonymization. 

Anonymization is achieved by removing or modifying 

Personal Identifiable Information (PII) to prevent 

direct identification while maintaining the dataset’s 

usability. Studies suggest that even in anonymized 

financial and behavioral datasets, identification 

remains a significant risk, particularly when attackers 

exploit a minimal set of distinguishing features. 

Identification occurs when attackers use external 

datasets and advanced machine learning techniques to 

cross-reference anonymized records with identifiable 

information, ultimately breaching user privacy. This 

demonstrates that anonymization alone is often 

insufficient to fully protect sensitive data from being 

traced back to its original owners. [17]. Furthermore, 

the integration of multiple data sources significantly 

increases the risk of privacy leakage [18]. For 

example, some universities in China have 

implemented new campus card systems that integrate 

traditional campus card functions with WeChat, the 

country’s most widely used smartphone-based social 

network application. The data records generated 

through campus cards usually reflect the offline 

behaviors of a student, such as payments at the 

university cafeteria or campus grocery store. The data 

records from WeChat Pay reflect both offline and 

online behaviors.  

Our experimental study demonstrates that these 

two anonymized educational datasets leak privacy to 

varying degrees and are complementary in terms of 

identity privacy leakage.  

The contributions of this work are as follows: 

- Illustrating privacy leakage issues associated 

with both offline and online data traces; 

- Identifying key features that significantly 

contribute to privacy leakage, and; 

- Conducting extensive experiments using 

various classification models to demonstrate 

the impact of privacy leakage. 

The remainder of this paper is organized as 

follows. Section 2 provides a review of related work, 

outlining existing research on privacy risks in 

educational data. Section 3 presents the system 

architecture, detailing the framework used in this 

study. Sections 4 and 5 describe the dataset and feature 

selection process, respectively, highlighting the key 

attributes used for analysis. Section 6 examines the 

increased privacy leakage resulting from integrating 

multiple datasets. Section 7 discusses the experimental 

results, demonstrating the impact of machine learning 

models on re-identification risks.  Section 8 provides 

an in-depth analysis and discussion, exploring their 

implications and the broader context of data privacy. 

Section 9 explores ethical considerations related to 

data privacy and responsible data sharing. Section 10 

outlines the study's limitations and proposes directions 

for future research. Finally, Section 11 presents the 

conclusion, summarizing the key findings and their 

implications. 

2. Related Work 

Big educational data, as an active branch of big data 

[19], introduced new opportunities to monitor student 

activities, identify the deviant ideologies of students, 

and foster a safe learning environment. Besides, it 

helps improve the efficiency and effectiveness of 

student learning, as well as their knowledge retention 

[20]. It also provides new opportunities for the well-

being of communities by improving public health and 

medicine [21]. Bienkowski et al. [22] proposed to 

apply data mining to analyze big educational data, 

improve the online learning system, and support 

management decisions. 

Wang proposed to mine campus card data, refine 

campus services and business operations, and identify 

potentially poor students through payment history 

[23]. Chai et al. [24] analyzed the campus card data to 

support the school logistics management. 

Furthermore, Lu et al. [25] proposed an encounter-

based model to discover offline social relationships 

through campus card data. Based on campus data 

evaluation, Wan [26] suggested that serious health 

problems exist in Chinese college students. 

As machine learning (ML) models increasingly 

rely on sensitive data, privacy-preserving techniques 

have become essential to mitigate risks of data 

exposure. Various modern approaches have been 

developed to ensure confidentiality, security, and 

compliance while maintaining model performance. 

Modern techniques like differential privacy, federated 

learning, homomorphic encryption, secure multi-party 

computation (SMPC), and blockchain-based ML offer 

varying levels of security. Differential privacy adds 



© Mehran University of Engineering and Technology 2025 3 

mathematical noise to training data or model outputs 

to prevent the re-identification of individual records 

[27], while federated learning Instead of sending raw 

data to a central server, ML models are trained locally 

on user devices, and only aggregated updates are 

shared for the strong privacy [28]. Homomorphic 

encryption enables computations on encrypted data, 

ensuring confidentiality, while SMPC allows multiple 

parties to collaborate without sharing raw data [29]. 

Despite advancements in privacy-preserving 

techniques, real-world threats persist, including 

membership inference attacks [30], adversarial 

poisoning in federated learning [31], and 

vulnerabilities that allow data reconstruction [32]. 

Additionally, A hybrid approach combining multiple 

privacy techniques is necessary to balance privacy, 

data utility, and computational feasibility in practical 

applications. Despite these advancements, real-world 

risks persist. Membership inference attacks can reveal 

whether specific data points were used in model 

training, potentially compromising privacy [33]. 

Adversarial attacks in federated learning can introduce 

malicious updates, leading to biased or manipulated 

models [34]. Data reconstruction risks remain a 

challenge, when attackers attempt to reverse-engineer 

anonymized information [35]. To achieve both 

privacy and utility, a multi-layered privacy-preserving 

approach is crucial for safeguarding data 

confidentiality while maintaining the effectiveness of 

machine learning models. However, there is an 

inherent trade-off between privacy protection and data 

utility in research and analytics. Higher data utility 

enhances model performance by providing more 

granular and detailed data, but this also increases the 

risk of re-identification and privacy breaches. On the 

other hand, implementing stronger privacy 

measures—such as differential privacy, k-anonymity, 

and data perturbation—can effectively mitigate data 

leakage risks but may lead to reduced data quality, 

lower model accuracy, and limited analytical insights. 

Striking a balance between these competing priorities 

is essential to ensure that data-driven innovations 

continue to deliver valuable insights without 

compromising user privacy. Sensitive information can 

be obtained through mining the pattern by the recipient 

[36]. A previous study has shown that anonymized 

financial data is not safe to release to third parties [37]. 

It has been suggested that only a few bits of an 

anonymized smartphone dataset are enough to identify 

individuals when it is linked with an external Netflix 

movie dataset [38].  

The integration of different types of educational 

data may increase the risk of privacy leakage. For 

example, a few Chinese universities are deploying 

new campus card systems, which integrate the 

functionality of their original campus cards into 

WeChat, the most popular smartphone-based social 

application in China. The data records generated 

through campus cards usually reflect the offline 

behaviors of a student, such as payments at the 

university cafeteria or campus grocery store, while the 

data records from WeChat Pay reflect both offline and 

online behaviors of students. Our experimental study 

suggests that these two anonymized educational data 

can leak privacy to different extents and these two data 

are complementary in terms of identity leakage. 

3. System Architecture 

To evaluate whether anonymized data can still leak 

privacy, numerous standard machine learning methods 

have been utilized to infer identity privacy from 

offline and online student behavior data. The 

underlying design philosophy of this process is that 

privacy leakage can be confirmed if any of the 

machine learning methods can infer privacy 

information from the anonymized data. The whole 

evaluation process consists of four phases, i.e., a 

preprocessing phase, a training phase, a model 

validation phase, and a testing phase (Fig. 1).  

The preprocessing phase aims to clean the data 

records with abnormal or missing values by removing 

them from the dataset. The identity information from 

each user is removed from both datasets, such as the 

International Mobile Subscriber Identity (IMSI), the 

International Mobile Equipment Identity (IMEI), and 

the account number associated with the campus card. 

Since it is high dimensional data various feature 

selection techniques were employed, including 

Embedded methods (Linear Regression, Random 

Forest, Ridge, LASSO, Stability Selection), the 

Wrapper method (Recursive Feature Elimination - 

RFE), and the Filter method (Univariate Selection), to 

optimize classification performance while minimizing 

redundancy and computational complexity, where 10 

out of 63 are optimal features are selected.  The feature 

selection results are presented in section 5. We also 

removed the rows and columns containing missing 

values by eliminating all of them. Furthermore, to 

maintain the statistical properties, the data associated 

with the students with less than 30 records per month 

are also removed from the dataset. The records from 

250 students are randomly selected for evaluation.  

In our work, we defined student behavior as daily 

activities. In addition, we converted the machine time 

format to the human-readable format, because humans 

usually do an activity in terms of the day, hour, and 

minute. Thus, we adopted day, hour, and minute 

extracted from the data as features The features are 
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converted to the numeric vector, each dimension of 

which is a numerical representation of the 

corresponding attribute because the chosen algorithm 

requires a numerical representation to facilitate 

processing. Usually, a data set is anonymized by 

eliminating the identity information. To verify 

whether campus card data and smartphone data are 

complementary, these two data sets are merged 

through the common data field, i.e. the phone number.  

In the second phase, each data set and the 

integrated dataset were partitioned into two 

independent subsets, the training subset, and the test 

subset, with the ratio being 3:1. Numerous supervised 

machine learning classifiers were applied to 

anonymized datasets to assess their ability to predict 

user identities based on behavioral data. The 

classifiers were trained on selected features extracted 

from smartphone usage and campus card transaction 

data. To evaluate their performance, the models 

underwent rigorous testing, including cross-validation 

and accuracy assessment. The experimental results, 

presented in Section 7, demonstrate the effectiveness 

of these classifiers in identity prediction, with high 

classification accuracy confirming the potential risks 

of privacy leakage despite data anonymization. 

Among the ten selected features, TCP Synchronize 

Attempt Delay, content length, base ID, cell ID, 

upstream traffic, and downstream traffic, day, hour, 

and minute are selected from the smartphone usage 

data, while POS_ID, day, and minute are selected from 

the campus card dataset. The ten features are selected 

based on the average score of various feature ranking 

methods, which can be classified into three categories, 

namely, the embedded methods, the wrapper method, 

and the filtering method, which will be explained in 

detail in Section 5. Both the selected features and the 

ground-truth labels are fed into the privacy inference 

model to generate a trained classifier. 

In the third phase, the hold out-validation was used 

to evaluate the performance of the learned model, 

where 75% of the data was used for training and 25% 

was used for testing purposes. The task requires 

predicting the labels to compare with the model output 

and validation set. The performance of the model is 

illustrated through the learning curve, which plots the 

prediction accuracy variation along with the change in 

the training set size (See Section 6). 

Finally, in the testing phase, each learned model is 

evaluated with the unused test set. The goal of this 

phase is to evaluate the generalization of the trained 

classifiers. The performance evaluation results are 

graphically presented in Precision, Recall, and F1-

score (Figures 14, 15, 16). 

In the whole process, two data sets, namely campus 

card data and smartphone usage data, have been used. 

The underlying reason to integrate these two datasets 

is that these two data sets represent two different types 

of daily activities, respectively. The campus-card data 

contains rich information about students’ offline 

activities, such as offline behavior at the campus 

cafeteria, while the smartphone usage data contains 

rich information on students’ online activities, such as 

the usage of applications, as well as offline activities, 

such as offline Ali-Pay and Wechat-Pay. 

This study successfully demonstrated that a 

student’s online and offline behavior patterns are 

highly unique, which means that the user’s identity can 

be easily recognized through a state-of-the-art 

machine learning algorithm. The experimental results 

show the cafeteria and smartphone data alone are 

enough to disclose the identity privacy of the student 

about 25% and 89%, respectively. Furthermore, we 

quantify the integration of these two anonymous data 

to extend the potential risk of student identification up 

to 99%. 

 

Fig. 1. The Privacy Disclosure Evaluation Process 

4. Dataset Description 

The datasets used in this work contain both online and 

offline behavior traces of 250 students. The offline 

behavior traces are collected from both campus card 

data and smartphone usage data, while the online 

behavior traces are collected from the smartphone 

usage data alone. We considered both online and 

offline behaviors, such as online shopping behavior 

and swapping campus cards in a cafeteria, 

respectively. In the following section, the two data sets 

will be described in detail. 

4.1 Smartphone Data 

The smartphone dataset considered in this study 

includes 57 attributes, which can be classified into 16 

categories, as illustrated in Table 1. 
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4.2 Campus Card  

DatasetThe campus card data includes identification 

information certifying the status of a student, as well 

as payment information for campus services, such as 

food, grocery, and shower. We selected the cafeteria 

payment transaction location and time information 

given in Table 2 as features. 

Table 1 

Attributes of the Smartphone Dataset 

Domain Features Description 

 

 

 

 

Mobile network information 

Radio access technology type RAT technology used by the device, namely; 

1: UTRAN; 2: GERAN; 3: WLAN; 4: GAN; 

5: HSPA 6: EUTRAN 

Machine IP Address Type Internet Protocol address is used to identify 

any device connected to the network This 

feature contains the data about different IP 

classes. 

Serving gateway IP address Gateway GPRS support node IP Address 

Access point name Name of the gateway between the mobile 

network and another computer network 

 

 

 

Application information 

Application Type Application grouped depending on the 

category 

Application subtype Subcategory of applications 

Application Content Content information of an application, such 

as 0 represents heartbeat, 1. Text, 3. Audio, 

4. Video, and 5, other files. 

Portal Application Collection Portal application set 

Location information Cell ID Area code  

Base station ID Base station Id  

 

Time 

Day Used the app during the day 

Hour Apps have been used within 24 hours. 

 Minute Apps have been used within the 60 minutes. 

 

 

 

 

Data traffic 

Upstream traffic Data sent from the device  

Downstream traffic Data received from the device  

Upstream IP Packet Upstream IP packet size 

Downstream IP Packet Downstream IP packet size 

Upstream TCP Outbound Packet Number of upstream TCP outbound packets. 

Downstream TCP Outbound Packet Number of downstream TCP 

retransmissions. 

Upstream TCP Retransmission Packet Data of packets which have been either 

damaged or lost in upstreaming 

Downstream TCP Retransmission Packet Packets which have been either damaged or 

lost in upstreaming. 

Upstream IP Fragmentation Packets  Fragmented datagrams pass through a link 

with a smaller maximum transmission unit. 
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Downstream IP Fragmentation Packets Fragmented datagrams pass through a link 

with a smaller maximum transmission unit. 

 

Port Information 

User Port number Through the port channel, devices 

communicate 

Application Server Port Server port number  

 

Protocol information 

Protocol Type Protocol type code (IP, IPx, HTTP, FTP) 

L4 Protocol Type of L4 protocol either TCP or UDP. 

 

 

 

 

 

 

 

Network Performance 

TCP Synchronize Attempt Delay TCP link response delay 

TCP Synchronize Confirm Delay Delay in sending the acknowledgement of 

the data received by the TCP sender 

TCP Synchronization Delay in the First successful transmission  

First request To first request Delay First transaction request to its first response 

packet delay   

First HTTP request To first request Delay First HTTP response packet relative to the 

first HTTP request packet.  

Last HTTP packet delay The last HTTP content packet is relative to 

the first HTTP request packet. 

The last acknowledgement packet delay Last HTTP packet ACK relative to the first 

HTTP request packet delay. 

TCP Synchronization Attempts Number of times TCP attempts to establish a 

connection 

 

 

 

APP /HTTP content 

HTTP content HTTP content is text, pictures, video and 

other application 

Content length Content length field in the protocol 

Cookie Cookie field in HTTP packet header 

Event type HTTP / WAP2.0 transaction type 

Application content Data representing 0: Heartbeat; 1: Text; 2: 

Picture; 3: Audio 4: Video. And 5: other files. 

 

 

Connection status 

TCP Connection Status TCP connection indication is either 0: 

success or 1: failure 

Application Status Status of application  

HTTP WAP status HTTP / WAP2.0-layer response code 

 

Packet size 

Window Size data in bytes received by the device at a time 

Maximum Segment Size maximum segment size of the TCP layer 

 

Software information 

Browser Browser information 

User Agent Terminal to the site to provide the terminal 

information  

 

 

 

Protocol behavior 

Destination Behavior Target behavior, 0: session is the user to click 

the page; 1: site target generated by the page  

Operation behavior Identity 0: business login;  1: refresh; 3: unrecognized 

Operation Finish Identity Finished state of the operation, 1: success; 2: 

failure; 3: unrecognized. 

Operation Delay Service latency 

End session Established session end 

 

URI 

URI unambiguously identified physical or logical 

resources on a network  

Reference URI It is either a URI or a relative path reference.  
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IP address User IP address User IP address 

Server IP Application’s server IP address 

 

Host  

Host Host  

X online host  Access applications outside of the corporate 

network 

Table 2  

Attributes of Campus Card Dataset 

Domain Features Description 

Location Place Campus card transactions performed 

 POS-ID A device number. 

 Cost The amount that has been paid in the cafeteria 

/supermarket 

Time Day The day of the month when payment is made 

Hour Payment made on the period of the day 

Minute Payment made on the period of a minute 

4.3 Integrated Dataset 

The purpose of integrating the two collected datasets 

is to illustrate that the two data sets are complementary 

in terms of privacy leakage. To verify this, besides the 

experiment conducted for each dataset to identify the 

students’ typical user online and offline behavioral 

patterns, additional experiments have been conducted 

on the integrated data set to illustrate the increases in 

privacy leakage. 

5. Feature Selection 

Feature selection intends to select the minimal subset 

of features that can maintain the learning performance 

as much as possible. Our objective is to find out the 

optimal subset of a feature that provides predictive 

accuracy.   In this study, seven feature selection 

techniques are considered to select the optimal feature 

subset to build the models. The feature selection 

techniques were driven by the need to optimize 

classification performance while minimizing 

redundancy and computational complexity. 

Embedded methods (Linear Regression, Random 

Forest, Ridge, LASSO, and Stability Selection) were 

chosen as they integrate feature selection into model 

training, improving efficiency and interpretability. 

Random Forest evaluates feature importance using 

impurity reduction, while LASSO and Ridge perform 

regularization to prevent overfitting, with LASSO 

shrinking some coefficients to zero and Ridge ranking 

features by contribution. Stability Selection enhances 

robustness by introducing noise to identify key 

features. The wrapper method, specifically Recursive 

Feature Elimination (RFE), was used to iteratively 

remove less relevant features, refining the subset for 

higher classification accuracy. Additionally, the filter 

method (Univariate Selection) was applied to evaluate 

individual feature significance based on statistical 

correlation with the target variable, ensuring that only 

the most relevant features were retained without 

relying on a specific model. Each feature selection 

technique estimates the significance of each feature in 

terms of its contribution to the classification 

performance. The optimal subset is formed based on 

the score of each feature, which reflects the 

importance of the corresponding feature. By 

convention, a high score implies a more valuable 

feature. For each feature, each of the seven feature 

selection algorithms will compute a score, and the 

average score will be calculated as the score for that 

feature. Then, all the features will be sorted in 

descending order of their scores, as shown in Tables 3 

and 4 Based on that, the top features with the higher 

scores are chosen as input to the classifiers. A subset 

of high-scoring features F = {,…,} is selected using a 

certain threshold. If any feature’s score is equal to or 

greater than the threshold, it will be selected. To 
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ensure robust and accurate user identity prediction, 

five supervised learning classifiers were selected 

based on their effectiveness in handling high-

dimensional data and their ability to generalize well. 

The Extra Trees Classifier was chosen for its 

efficiency in managing complex datasets while 

reducing variance through randomized decision trees. 

The Bagging Classifier enhances robustness by 

aggregating predictions from multiple models, 

mitigating overfitting. The Decision Tree Classifier 

was included for its interpretability and capability to 

model non-linear relationships effectively. The k-

Nearest Neighbors (KNN) Classifier was employed as 

a non-parametric baseline, particularly useful for 

smaller datasets and comparisons with tree-based 

models. Finally, the Random Forest Classifier, an 

ensemble learning method, was utilized to further 

mitigate overfitting and improve classification 

accuracy. This diverse selection of classifiers ensures 

a comprehensive evaluation of model performance 

and reliability in identifying users based on 

anonymized behavioral data.  

5.1 Embedded Method 

This method combines the construction of the model 

and the feature selection task. It is implemented by 

features that have built-in feature selection methods. 

We have selected five classifiers, which perform 

feature selection as a part of the model construction, 

i.e., a Linear Regression classifier, a Random Forest 

classifier, a Ridge, a LASSO, and stability.   

5.1.1 Linear regression feature selection 

Regression is a technique of modelling an output 

variable (y) based on some input variables (x, i.e., 

features). It is generally used to characterize the 

correlation between y and x. Linear regression is a 

linear model that assumes a linear relationship 

between y and x. More specifically, y can be 

calculated from a linear combination of the input 

variables, as shown in Fig. 2, where the red line 

represents the relation between x and y, which can be 

learned from the associated data points. The linear 

relation can be modelled by Eq. (1). 

𝑌 = 𝛽0 +  𝛽1 ∗ 𝑥                                                 (1) 

Where β0 represents the intercept and β1 denotes the 

coefficient for x.  

5.1.2 The random forest feature selection 

Random forest (RF) [39] is a method that generates the 

forest of decision trees, where each tree is randomly 

sampled from the original data. Every node in the 

decision trees represents a feature, which will partition 

the data into multiple sub-spaces based on the possible 

feature values. Since the different ordering of the 

features (from the root to the leaves) may incur 

different classification accuracies, the relative 

ordering reflects the importance of features, which can 

be used to rank and select the features. In this work, 

we adopted Gini impurity [40], to characterize the 

classification accuracy. Gini Impurity is a measure 

used in decision tree algorithms to determine how 

“pure” a split is when classifying data. It quantifies the 

likelihood of an incorrect classification if a randomly 

chosen element is labelled according to the 

distribution of classes in a given node. It is calculated 

as given in Eq. (2). 

𝐺𝑖𝑛𝑖(𝑠𝑝𝑙𝑖𝑡) = 1 − ∑ 𝑝𝑖
2𝑛

𝑖=1
           (2) 

Where pi is the rate of data items that belong to class 

i. A lower Gini Impurity value indicates a purer node, 

meaning better classification accuracy. 

5.1.3 The LASSO regularization method 

The Least Absolute Shrinkage and Selection Operator 

(LASSO) is a powerful method to perform two main 

tasks: regularization and feature selection [41]. 

Regularization is a technique used in machine learning 

to prevent overfitting by adding a penalty to the 

model’s complexity. Overfitting occurs when a model 

learns not only the patterns in the training data but also 

noise, making it perform well on the training data but 

poorly on new, unseen data. It is a particular case of 

L1 regularization that adds the sum of the absolute 

values of model coefficients as a penalty. It promotes 

sparsity by shrinking some coefficients to zero, 

effectively performing feature selection, as shown in 

Eq. (3).  

𝑤 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤 ∑ ( 𝑦𝑖
𝑁
𝑖=1 − ∑ 𝑥𝑖𝑗 𝑤𝑖𝑗)2 +

 λ ∑ |
𝑝
𝑗=1 𝑤𝑖𝑗|                                  (3) 

We assume that the data xij and label yi for, where 

N is the total number of data points, i = 1,2, …, N 

represents the i-th data point, x_ij denotes the j-th 

feature of data point i, coefficient w_ij means the 

weight of feature j of data point i, and the Langanger 

λ≥ 0 tradeoffs the minimal square error and 

regularization term. The larger the Langanger λ, the 

more zero coefficients [42]. Model has 57 scores but 

only 12 of them are non-zero. The features having zero 

scores are useless in predicting the target value.  

5.1.4  The regularized linear method (Ridge) 

Ridge is similar to LASSO. The key difference 

between the two is that Ridge adopts L2 

regularization, which penalizes large coefficients by 

adding the sum of their squares to the loss function. L2 

regularization helps prevent overfitting by ensuring 

that all feature weights remain small rather than 
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eliminating them entirely. Unlike LASSO, which 

forces some coefficients to zero (performing feature 

selection), Ridge regression shrinks all coefficients 

towards zero but retains all features in the model.   

Ridge regression regularizes the minimal square 

error by adding the sum of squares of the coefficients 

in the optimization function, as shown in Eq. (4). The 

effect of L2 regularization is that it forces the model to 

choose small values for the coefficients (wj), 

preventing any single feature from dominating the 

prediction. Therefore, the coefficients of those 

features with relatively less impact will be closer to 

zero, which can be used to rank the features based on 

their importance.  

𝑤 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤 ∑ ( 𝑦𝑖  
𝑁
𝑖=1 − ∑ 𝑥𝑖𝑗 𝑤𝑗 )

2 +

 λ ∑ |
𝑝
𝑗=1 𝑤𝑗|2),                        (4) 

The effect of L2 regularization is that it forces the 

model to choose small values for the coefficients (wj), 

preventing any single feature from dominating the 

prediction. Therefore, the coefficients of features with 

relatively less impact will be closer to zero, which can 

be used to rank feature importance.            

5.1.5 The stability selection 

In stability selection [43], certain noise is added to the 

original data by creating bootstrap samples—

randomly drawn subsets of the data using the 

replacement approach. Bootstrap sampling is a 

statistical technique where multiple random samples 

of the same size as the original dataset are created by 

drawing data points with replacement. This means that 

some data points may appear multiple times in a 

sample, while others may be excluded. This method 

helps estimate the stability and importance of selected 

features. 

In this study, LASSO has been chosen as the base 

feature selection algorithm to identify the most 

relevant features in each bootstrap sample. The 

fundamental idea is straightforward: irrelevant 

features will have little influence on classification 

performance when perturbed by noise. In contrast, the 

model’s performance should be significantly impacted 

when important features are perturbed. Consequently, 

features that contribute minimally to classification 

accuracy under noise are removed, and only the most 

robust and essential features are retained for the final 

classification model. If we have an original dataset 

X={x1,x2,...,xN},}, we generate B bootstrap samples 

𝑋𝑏
∗ (where b=1,2,..., B). The bootstrap estimate of the 

mean is given in Eq. (5). 

𝜇̂∗ =
1

𝐵
∑ 𝑋̃𝑏

∗𝐵

𝑏=1
            (5) 

5.2 The Wrapper Method 

The wrapper methods [44] evaluate the usefulness of 

each feature by iterative training and testing a model 

based on different subsets of features. Instead of 

ranking features independently, the wrapper method 

selects features based on their direct impact on model 

performance. A model is trained using all available 

features, and then features are systematically removed 

or added based on their contribution to classification 

accuracy. Each iteration involves making predictions, 

and the change in prediction accuracy is used to assess 

feature importance—the greater the accuracy drop 

when a feature is removed, the more significant that 

feature is. Inza [45] suggested that the goal of the 

wrapper method is to identify the optimal subset of 

features that maximizes model performance by 

selecting those that create the largest margin of class 

separation. This process follows a sequential feature 

selection strategy, where features are either eliminated 

or added one by one based on classifier performance 

until an optimal feature set is determined. Common 

wrapper techniques include Recursive Feature 

Elimination (RFE), which recursively removes less 

important features, and Forward/Backward Feature 

Selection, which iteratively evaluates feature subsets 

to find the best-performing combination. By focusing 

on model-driven feature selection, wrapper methods 

enhance predictive accuracy but are computationally 

expensive, as they require multiple iterations of 

training and evaluation. The wrapper method can be 

mathematically expressed as given in Eq. (6) 

𝑆∗ = ∑ 𝑤𝑗𝑥𝑗

𝑝

𝑗=1
 𝑤ℎ𝑒𝑟𝑒 𝜔𝑗 = arg 𝑚𝑎𝑥 𝑓(𝑆𝑘)  

                  (6) 

In the above Eq. 𝑆∗is the optimal subset of selected 

features, where 𝑥𝑗 represents individual features, 𝑤𝑗 is 

the weight or importance score of feature j.  𝑓(𝑆𝑘) is 

the performance function (e.g., accuracy, F1-score), 

which we aim to maximize. 

5.2.1 Recursive feature elimination (RFE) 

In this work, we adopt a special type of wrapper 

method, called Recursive Feature Elimination (RFE), 

which repeatedly removes features with smaller scores 

(i.e., less prediction reduction). RFE starts by ranking 

all features in the dataset and stops when all the 

features have been evaluated. Kumari [46] illustrated 

that RFE is a greedy optimization for finding the best-

performing subset of features. 

𝜔𝑗 = ∑ |𝛽𝑗|
𝑁

𝑖=1
𝑤ℎ𝑒𝑟𝑒 ∀𝑗 ∈  𝑆𝑘         (7) 

In this Eq. (7) , ω_j represents the importance score 

of feature j, which determines its contribution to the 
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model's predictive performance. The term βj  denotes 

the coefficient of feature j in a regression model or its 

importance score in a tree-based model, indicating 

how significantly it influences the output. 

Additionally, N refers to the total number of training 

samples, which affects the computation of feature 

importance by considering the overall dataset size 

during the selection process. 

5.3 The Filter Methods 

Filter methods are feature selection techniques that 

evaluate the relevance of each feature by measuring its 

statistical relationship with the target variable. Unlike 

wrapper methods, which rely on a machine learning 

model for feature selection, filter methods assess 

features independently of any specific algorithm. This 

makes them computationally efficient and suitable for 

handling high-dimensional datasets. 

Several statistical techniques are used to determine 

the correlation between features and the target 

variable, including the Chi-squared test [47], mutual 

information [48], and correlation coefficient scores.  

In this study, we have used Chi-Squared Test to 

rank features and measures the dependence between 

categorical features and the target variable. It is 

calculated as  Eq. (8). 

𝑥2 = ∑
(𝑂𝑖−𝐸𝑖)2

𝐸𝑖
    (8) 

Where 𝑂𝑖is the observed frequency of a category. 

and 𝐸𝑖 is the expected frequency under the assumption 

of independence are individual data points of the 

feature and target variable, respectively and 𝑋̅  and 

𝑌̅are the means of 𝑋 and 𝑌. 

5.3.1 Univariate Feature Selection 

The univariate feature selection technique evaluates 

each feature individually to measure its correlation 

with the output variable. Unlike multivariate 

techniques, it does not account for dependencies 

between different features; instead, it ranks features 

based on their independent relationships with the 

target variable. 

A common approach for univariate feature 

selection is Pearson’s correlation coefficient, which is 

used in this study. It is calculated using Eq. (9). If 〖|r

〗 _i | is close to 1, the feature  is X_j strongly 

correlated with the target variable and is likely to be 

useful for prediction. If the feature is close to 0, it has 

little to no correlation with the target and may be 

irrelevant for model training. 

𝑟𝑖 =
∑(𝑋𝑗−𝑋𝑗̅̅ ̅ ) (𝑌−𝑌̅ )

√∑(𝑋𝑗−𝑋𝑗̅̅ ̅ )
2

 ∑(𝑌−𝑌̅ )2

        (9) 

In the above Eq. 𝑟𝑖 is the correlation coefficient for 

the feature 𝑋𝑗 .  𝑋𝑗 represents the 𝑗 − 𝑡ℎ values of the 

feature across all samples. 𝑌  is the target variable. 

However,  𝑋𝑗̅ and  𝑌̅are the means of feature 𝑋𝑗  and 

the target 𝑌, respectively. 

5.4 The Integrated Feature Selection  

To improve the model performance, we integrate the 

above feature selection methods by averaging their 

feature scores, as shown in Eq. (10).  

X =  
1

𝑙
∑ 𝑏𝑖

𝑙
𝑖=1 =  

𝑏1 + 𝑏2+⋯+𝑏𝑙

𝑙
        (10) 

where fi represents the feature score computed by 

the i-th feature selection method and l denotes the total 

number of feature selection methods. 

The features, the average scores of which are larger 

than a pre-defined threshold, 0.3, are selected as the 

input features for the subsequent processes. The 

selected features associated with the smartphone usage 

data and campus card data are ranked in descending 

order in terms of their scores, as shown in Tables 3 and 

4, respectively. The corresponding graphical 

representation is shown in Fig. 3. The selected features 

from the smartphone data include TCP 

Synchronization Attempts, content length, downlink 

traffic, last acknowledgement packet delay, uplink 

traffic, cell ID, base station ID, day, hour, and minute. 

The selected features from the campus card dataset 

include minute, POS_ID, and day.  

Table 3 

Mobile dataset 

Attributes L
as
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TCP synchronize Attempt 1 0 0 0.09 1 1 0 0.44 

Content-Length 0 0 0.17 0.74 0 1 1 0.42 

Downstream Traffic 0 0 0.26 0.75 0 0.96 0.61 0.37 
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Cell ID 0 0 1 0.53 0 1 0 0.36 

Last ACK Packet Delay 0 0 0.3 0.77 0 0.96 0.48 0.36 

Upstream Traffic 0 0 0.37 0.79 0 0.99 0.32 0.35 

Base ID 0 0 0.83 0.6 0 0.96 0 0.34 

Day 0 0 0.66 0.51 0 0.99 0 0.31 

Hour 0.01 0 0.7 0.44 0.01 1 0 0.31 

Minute 0.01 0 0.71 0.42 0.01 1 0 0.31 

First request to first Response Delay 0 0 0.25 0.7 0 1 0.05 0.29 

Browser 0.44 0 0.01 0.11 0.45 1 0 0.29 

TCP synchronize Attempt Delay 0 0 0.33 0.68 0 0.94 0.02 0.28 

TCP synchronize confirm delay 0 0 0.35 0.67 0 0.96 0.01 0.28 

SGWG ID 0.03 0 0.37 0.37 0.03 1 0 0.26 

Last HTTP Packet Delay 0 0 0.23 0 0 0.74 0.82 0.26 

App server IP 0 0 0.23 0.56 0 1 0 0.26 

Host ID 0 0 0.17 0.65 0 0.96 0 0.25 

App server port 0 0 0.02 0.58 0 1 0.11 0.24 

Event type 0.24 0 0.05 0.12 0.24 1 0 0.24 

Upstream IP packet ID 0 0 0.16 0.54 0 1 0 0.24 

HTTP WAP status 0 0 0.01 0.61 0 1 0 0.23 

Downstream IP packet ID 0.01 0 0 0.49 0.01 0.93 0 0.21 

Portal App collection 0.11 0 0.01 0.25 0.11 1 0 0.21 

HTTP content ID 0.01 0 0.08 0.4 0.01 1 0 0.21 

Upstream TCP retransmission Packet 0.01 0 0.01 0.39 0.01 1 0 0.2 

Radio access technology 0 1 0 0.35 0 0 0 0.19 

App subtype 0.04 0 0.06 0.19 0.05 1 0 0.19 

Upstream TCP outbound packet 0.05 0 0 0.23 0.05 1 0 0.19 

Operation delay 0 0 0.23 0.02 0 0.26 0.82 0.19 

Downlink TCP outbound Packet 0.03 0 0 0.21 0.03 0.96 0 0.18 

URI 0 0 0 0.98 0 0 0 0.14 

X Online host 0 0 0 1 0 0 0 0.14 

User-agent 0 0 0 0.96 0 0 0 0.14 

Refer URI 0 0 0 0.95 0 0 0 0.14 

Window size 0 0 0 0.93 0 0 0 0.13 

Maximum segment size 0 0 0 0.89 0 0 0 0.13 

Cookie 0 0 0 0.91 0 0 0 0.13 

Destination behavior 0 0 0 0.88 0 0 0 0.13 

Machine IP address 0 0.51 0 0.33 0 0 0 0.12 

TCP connection status 0 0 0 0.84 0 0 0 0.12 

Session is end 0 0 0 0.82 0 0 0 0.12 

Operation behavior Identity 0 0 0 0.81 0 0 0 0.12 

Operation finish identity 0 0 0 0.86 0 0 0 0.12 

TCP synchronize success first Request 

delay 0 0 0.23 0.04 0 0.48 0 0.11 
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Upstream IP fragmentation packets  0 0 0 0.72 0 0 0 0.1 

Downstream TCP retransmission packet 0 0 0 0.63 0 0 0 0.09 

Downlink IP fragmentation packets 0 0 0.22 0.05 0 0.36 0 0.09 

User IPv4 0 0 0 0.46 0 0 0 0.07 

User port 0 0 0 0.47 0 0 0 0.07 

Access point name  0 0.13 0 0.32 0 0 0 0.06 

App type code 0 0.14 0 0.3 0 0 0 0.06 

First HTTP Request packet delay 0 0 0.22 0.07 0 0.16 0 0.06 

Protocol type 0 0.01 0 0.28 0 0 0 0.04 

App Type 0 0 0 0.26 0 0 0 0.04 

App content 0 0 0 0.18 0 0 0 0.03 

App status 0 0 0 0.16 0 0 0 0.02 

L4Protocal 0 0 0 0.14 0 0 0 0.02 

Table 4 

Campus card dataset 

Attributes L
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Minute 1 1 1 0 1 0 0.09 0.58 

POS_ID 0.58 0.58 0.46 0.4 0.58 0 1 0.51 

Day 0.65 0.65 0.68 0.2 0.65 0 0 0.4 

Hour 0.33 0.33 0.16 0.6 0.33 0 0.01 0.25 

Cost 0 0 0.5 1 0 0 0.17 0.24 

Place 0.16 0.16 0 0.8 0.16 0 0.05 0.19 

 

Fig 3. The Mean Feature Ranking Of Each Dataset Is Shown

6. The Increased Privacy Leakage Of Integrated 

Data 

To illustrate that the integrated data can improve the 

model performance, we adopt a learning curve to 

visualize the model performance associated with the 

individual datasets and the integrated dataset. A 

learning curve is usually used to compare the 

validation and training performance along with the 

increase in the data size for a particular model. It refers 

to a graphical representation of the prediction accuracy 

on the y-axis and the training set size on the x-axis, 

which demonstrates the performance of the model 

along with the increasing number of data instances 

used to train the model. In supervised machine 
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learning, the learning curve is used to evaluate the 

effect of increasing training data on model 

performance and to detect overfitting by analyzing the 

gap between the training and validation curves. 

6.1 Privacy Preservation Techniques 

Anonymization techniques play a crucial role in 

preserving user privacy, but their effectiveness varies 

based on the method used and the type of data being 

protected. Generalization and suppression help reduce 

identifiability by modifying or removing sensitive 

attributes, yet they often compromise data utility and 

remain vulnerable to linkage attacks. K-anonymity 

ensures that each record is indistinguishable from at 

least k-1 others, but it does not prevent attackers from 

inferring missing details. Differential privacy, which 

introduces mathematical noise to data queries, 

provides stronger privacy guarantees while 

maintaining statistical accuracy, though improper 

tuning can reduce its effectiveness. Homomorphic 

encryption, allowing computations on encrypted data, 

offers maximum security but remains computationally 

expensive. While no single method provides complete 

protection, a hybrid approach combining multiple 

techniques is often necessary to balance privacy and 

data utility, reducing re-identification risks while 

ensuring meaningful data analysis. 

6.2 The Data Set Comparisons Through Multiple 

Classifiers 

To verify whether the integration of the smartphone 

usage data and campus card data may increase the risk 

of privacy leakage, we conducted experiments on both 

individual datasets and the integrated dataset. For 

comparison, the five classifiers (k-nearest Neighbor, 

Bagging, Extra Tree, Decision Tree, and Random 

Forest Tree classifiers) are applied to compare the 

classification accuracy of each classifier. Each data set 

(the smartphone, the campus card, and the integrated 

datasets) is trained with the five classifiers and the 

corresponding experiment results are shown in Figures 

7, 8, and 9, respectively, in the form of the learning 

curve, which shows the relationship between the 

training set size and accuracy score on the training set 

and the validation set. 

Firstly, we consider the campus card dataset. The 

learning curves of those five classifiers applied to the 

campus dataset are shown in Fig. 7, where the y-axis 

is the accuracy score, and the x-axis is the training set 

size. The higher the score, the better the performance 

of the corresponding model. From Fig. 7, we can see 

the existence of the overfitting problem, which can be 

mitigated by the introduction of more training 

samples. For all the classifiers, the gap between the 

training score and the validation score is large. 

Moreover, except for the k-nearest neighbor, the gap 

between all the other classifiers could be decreased by 

adding more training samples.

  

Fig 7. The Learning Curve Of The Classifiers Trained On The-Campus Dataset
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Secondly, we apply the same five models to the 

mobile usage dataset, the experiment results of which 

are presented in Fig. 8. From Fig. 8, it can be observed 

that all the classifiers achieve better prediction 

accuracy on the mobile data set than the campus data 

but all the classifiers still suffer from the overfitting 

problem. The training score of all the classifiers is a 

higher score than the cross-validation score. Except 

for the k-nearest neighbor classifier, for all the other 

classifiers, the gap between the training score and 

validation score is significantly less than the 

corresponding one from the campus card data set. 

 

Fig 8. The Learning Curve Of The Classifiers Trained On The Smartphone Usage Dataset

Finally, we apply the same five models to the 

integrated dataset, the experiment results of which are 

presented in Fig. 9. From Fig. 9, it can be observed that 

both the training accuracy and validation accuracy for 

all five classifiers have been significantly improved. 

Moreover, the overfitting problem disappears due to 

the information complementarity between the campus 

card data set and the smartphone usage data set. This 

illustrates that the campus card data and smartphone 

usage data can be complementary to each other in 

terms of leaking user privacy.
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Fig. 9. The Learning Curve Of The Classifiers Trained On The Integrated Dataset

7. Experiment Evaluation 

To assess whether anonymized integrated data can still 

lead to privacy leakage, we trained multiple standard 

machine learning classifiers. The significance of 

selected features was analyzed by high-score features 

applied to different feature selection techniques. A 

high score corresponds to the most likely to be selected 

to construct the optimal subset. The subset of features 

of each dataset is chosen to find the efficient training 

model. Through experimental analysis, it can be 

validated that the learning models can be trained with 

higher accuracy based on the selected features. This 

ensures that the selected features provide 

discriminative information. The results demonstrated 

that the linkage between smartphone data with campus 

card data has a potential implication of privacy loss. 

The k -Nearest Neighbor, Bagging, Random Forest 

Tree, Extra Tree, and Decision Tree classifiers have 

been applied after the feature selection. 

7.1 Experiment Environment 

We conducted three groups of experiments, on the 

three different real datasets. The powerful package of 

the Python Scikit-learn library [49] has been used for 

implementing the existing classifiers. Experiments 

were performed on a computer (R) Xeon (R) with CPU 

E5-2620 v4 @ 2.10GHz x 16 with 12 TB main 

memory and 512 GB RAM size. All the experiments 

were done under Ubuntu 16.04 LTS 64-bit.To verify 

that the anonymized integrated data may still leak 

privacy, we trained several standard machine learning 

classifiers. The significance of selected features was 

analyzed by high-score features applied to different 

feature selection techniques. A high score corresponds 

to the most likely to be selected to construct the 

optimal subset. The subset of features of each dataset 

is chosen to find the efficient training model. Through 

experimental analysis, it can be validated that the 

learning models can be trained with higher accuracy 

based on the selected features. This ensures that the 

selected features provide discriminative information. 

The results demonstrated that the linkage between 

smartphone data with campus card data has a potential 

implication of privacy loss. The k -Nearest Neighbor, 

Bagging, Random Forest Tree, Extra Tree, and 
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Decision Tree classifiers have been applied after the 

feature selection.  

7.2 Model Evaluation 

The experimental results demonstrate the power of 

integrating two datasets of student behavior disclosing 

the student's privacy. The integrated dataset refers to 

the set formed by joining two datasets smartphone and 

campus card through the user's phone number, which 

contains features of each dataset chosen with the mean 

ranking technique individually. The features selected 

with distinct behavioral characteristics are used to 

construct the classification model with better 

classification accuracy. For comparison, we also 

demonstrated the result of each dataset, campus card 

data, smartphone data, and integrated data respectively 

with the same sample size. The results show each 

dataset leaks enough privacy, while we can also 

observe from the results the risk of disclosing personal 

data. 

The measures used in this study such as accuracy, 

precision, recall, and f1-score are derived from the 

confusion matrix. The annotations used are given in 

Table 5.  

Table 5 

Other notations. 

Term Meaning 

𝑦 Set of predicted labels 

ŷ Set of true labels 

L Set of labels 

S Set of samples 

𝑦𝑠 Subset of  𝑦 with sample s, i.e 𝑦𝑠 =

: {(𝑠′, 𝑙)  ∈ 𝑦 | 𝑠′ = 𝑠} 

𝑦𝑙  Subset of y with the label l 

ŷ𝑠 Subset of  ŷ  

ŷ𝑙 Subset of  ŷ with the label l  

 

7.2.2 Average accuracy 

To measure the accuracy of the model, in multilabel 

classification, the function returns the subset accuracy. 

If the entire set of predicted labels for a sample strictly 

matches the true set of labels, then the subset accuracy 

is 1.0; otherwise, it is 0.0. The best accuracy is 1.0 

whereas the worst is 0.0. It is the predicted value of the 

i-th sample and is the corresponding true value, then 

the fraction of correct predictions over is defined as 

Eq. (11). 

    𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦( 𝑦, ŷ) =
1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
  ∑ 1(ŷ𝑖 =

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=0

 𝑦𝑖)                (11)   

   

Fig 9. Classification Accuracy Comparison of Classifiers

The accuracy results of smartphone usage, campus 

card, and integrated datasets are plotted in Fig. 9, 

which illustrates that data integration can improve the 

accuracy of all classifiers. This implies that 

smartphone usage and campus card data are 

complementary in terms of privacy leakage.  

7.2.1 Log Loss 

The log loss function quantifies the accuracy of a 

classifier by penalizing false classifications.  

Minimizing the log loss is equivalent to maximizing 

the accuracy of the classifier. The formal definition of 

the log loss function is shown in Eq. (12). 

  𝐿𝑙𝑜𝑔(𝑌, 𝑃) =  −𝑙𝑜𝑔𝑃𝑟(𝑌|𝑃) =

 −
1

𝑁
∑ ∑ 𝑦𝑖,𝑗

𝑀
𝑗=1

𝑁
𝑖=1 𝑙𝑜𝑔𝑝𝑖,𝑗                          (12) 

where N represents the number of data samples, M 

denotes the number of different labels,  is a binary 

variable indicating whether label j is correct for 

sample i, and is the probability, on which the model 

assigns label j to sample i.  
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The experiment results are shown in Fig. 10, from 

which it can be observed that the smartphone usage 

data and campus card are complementary in terms of 

privacy leakage because the integrated data 

significantly reduces the log loss of all the classifiers 

except the K-neighbors classifier.  

 

Fig 10. Log Loss Comparison of different Classifiers

7.2.3 Recall 

The recall was used to know how much relevant 

information was extracted by the system. The recall is 

calculated as the number of correct positive 

predictions by the total number of positive tuples 

available in the dataset defined as the ratio of the total 

number of correctly classified samples to the total 

number of samples, as shown in Eq. (13).  

          𝑅𝑒𝑐𝑎𝑙𝑙 =   
𝑇𝒑

𝑇𝒑+𝑭𝒏
,                             (13) 

The experiment result is plotted in Fig. 14, which 

shows the recall of the five classifiers on the three 

datasets, respectively. It can be observed that is 

evident that the campus dataset provides a very low 

recall value for the classification of students’ 

behaviors. For the campus dataset, the best precision 

is 25% and is achieved by Extra Tree Classifier. For 

the mobile dataset, the students' behaviors are 

classified with better recall than in the campus dataset. 

However, it is clear from the results that the integrated 

dataset yields much higher recall throughout all 

classifiers. It is obtained when the additional step of 

integration of datasets is performed to achieve a 

balanced recall score.

 

Fig 14. Recall Comparison Curves of 5 discrete Classifiers
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7.2.4 Precision 

The precision measure is known to correctly identify 

the number of relevant instances among the retrieved 

instances which is the fraction of Tp among the 

number of Tp plus the number of Fp given by the 

model. The ability of precision is not to label a positive 

sample as negative. The best precision value is 1 and 

the worst value is 0. Precision is considered as one 

label versus all other labels as if it had been reduced to 

a binary 'Label X' vs 'not Label X' problem. Precision 

can be calculated through Eq. (14).  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝒕𝒑𝒊

𝒕𝒑𝒊+𝑓𝑝𝒊
,                                         (14) 

The variation of the precision of the five classifiers 

along with the change in the number of students used 

in the training data for the individual data sets and the 

integrated dataset is visualized in Fig.15, from which 

it can be observed that the precision of the campus 

dataset decreases rapidly along with the increment of 

the number of students and all classifiers show similar 

precision with a marginal difference. The precision of 

the smartphone dataset decreases much less than that 

of the campus dataset, except for that of the KNN 

classifier. The precision of the integrated dataset 

shows a superior precision due to the 

complementation between the two individual datasets.  

 

Fig 15. Precision Comparison Curves of the 5 discrete 

Classifiers 

7.2.5 F1-score 

The F1 score can be interpreted as a weighted average 

of precision and recall, where an F1 score reaches its 

best value at 1 and the worst score at 0. The relative 

contribution of precision and recall to the F1 score are 

equal. The graphical representation of the F1 score is 

shown in Fig. 16 and can be computed through Eq. 

(15), and the comparison results of different classifiers 

are given in Table 6. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
𝟐 ∗ (𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏  .  𝒓𝒆𝒄𝒂𝒍𝒍)

𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏+𝒓𝒆𝒄𝒂𝒍𝒍
                      (15) 

 

Fig 16. F1 Score Comparison Curves of the 5 discrete 

Classifiers 

The F1 scores of the five classifiers applied to the 

individual dataset and the integrated dataset along 

with the increment of the number of students are 

visualized in Fig. 10. The visualizations suggest that 

classifiers have produced a better F1 score when 

additional information sources are used. 

The classification algorithm used in this 

experiment performed well with integrated data with 

high precision and high recall, The F1 score 

approximately reached 99% with the increasing size of 

the sample. The classification results of all the applied 

to the integrated dataset were nearly identical. Our 

results demonstrate that even anonymized behavioral 

data (e.g., smartphone usage and campus card 

transactions) can still be used to re-identify individuals 

with over 99% accuracy when combined with machine 

learning techniques. This finding raises serious 

privacy concerns, as it highlights the potential for de-

anonymization attacks, where adversaries can 

reconstruct personal identities from supposedly 

anonymized datasets. The risk is further amplified 

when multiple datasets are integrated, as seen in our 

study, where privacy leakage increases significantly 

after combining different data sources. 

Our findings emphasize the urgent need for 

stronger privacy-preserving measures, such as 

differential privacy, secure multi-party computation 

(SMPC), and federated learning, to minimize the risk 

of data misuse while maintaining analytical value. We 

have incorporated this discussion in the revised 

manuscript to better reflect the broader implications of 

our results in the context of privacy and security. 

8. Results and Discussion 

8.1 Results 

The study presents significant findings regarding 

identity disclosure, emphasizing the impact of data  



© Mehran University of Engineering and Technology 2025 19 

sharing on users’ privacy. The data in Table 6 

illustrates a clear pattern where linked data increases 

the chances of privacy leakage, reinforcing concerns 

about personal information exposure in digital 

environments. The analysis reveals that when different 

datasets are combined, the risk of re-identification 

grows, making it easier for adversaries to infer 

sensitive user attributes. 

Furthermore, the statistical analysis confirms that 

all five classifiers K-Nearest Neighbors (KNN), Extra 

Trees, Bagging, Decision Tree, and Random Forest 

consistently demonstrate the vulnerability of 

behavioral data to privacy breaches. The classification 

models indicate that existing privacy measures are 

insufficient in preventing unauthorized access to 

sensitive information. Notably, almost all classifiers 

show the highest accuracy in detecting potential 

privacy threats, suggesting that machine learning 

techniques can effectively identify privacy risks but 

may also be used by attackers to exploit weaknesses in 

data security. 

The results also show variations between offline 

and online data, indicating potential underlying causes 

such as differences in data collection mechanisms, 

user behavior patterns, and exposure levels. Offline 

datasets generally exhibit lower privacy risks due to 

controlled access, whereas online datasets are more 

susceptible to leakage due to third-party tracking, 

metadata linkage, and user profiling. 

8.2 Discussion 

These findings align with previous studies on privacy 

risks in data-sharing environments, supporting the 

argument that behavioral data privacy requires 

stronger protection mechanisms. The high 

classification accuracy of the applied machine 

learning models highlights the predictability of user 

behavior, which adversaries can exploit for re-

identification and unauthorized profiling. This 

confirms that privacy vulnerabilities persist even when 

data is anonymized, as patterns in user activity can still 

be inferred through statistical techniques. 

A key takeaway from this study is that traditional 

anonymization techniques, such as data masking and 

differential privacy, may not be sufficient to mitigate 

risks in linked datasets. The strong performance of 

decision-tree-based classifiers suggests that advanced 

privacy-preserving techniques, such as homomorphic 

encryption, federated learning, and synthetic data 

generation, should be explored to enhance user 

privacy. 

Additionally, the discrepancies observed between 

offline and online data suggest that context plays a 

crucial role in privacy exposure. Online data, being 

more dynamic and subject to tracking mechanisms, 

faces greater risks, whereas offline data benefits from 

controlled access and limited exposure. This 

reinforces the need for context-aware privacy 

frameworks that adapt protection levels based on the 

environment in which data is shared. 

Despite these insights, certain limitations exist in 

the study. The results are highly dependent on the 

dataset characteristics and classification models used, 

and future research should explore additional 

classifiers, deep learning approaches, and real-world 

privacy attack simulations to further validate these 

findings. Moreover, user consent mechanisms and 

regulatory frameworks should be integrated into future 

studies to assess the role of legal and ethical 

considerations in privacy protection. 

Overall, this study contributes to the ongoing 

discourse on data privacy and identity disclosure, 

emphasizing the urgent need for robust, adaptive, and 

scalable privacy-preserving techniques to safeguard 

behavioral data in both online and offline 

environments. 

Table 6 

Comparison of results of different classifiers 

Canteen dataset 

Classifiers KNN Extra tree Bagging Decision tree Random forest 

Accuracy 0.125 0.234 0.202 0.197 0.212 

Log loss 0.254 0.213 0.224 0.290 0.211 

Precision 0.153 0.253 0.209 0.209 0.223 

Recall 0.155 0.255 0.213 0.213 0.225 

F-score 0.137 0.250 0.207 0.206 0.219 

Mobile 

Accuracy 0.281 0.834 0.833 0.825 0.812 

Log loss 0.200 0.020 0.025 0.050 0.030 

Precision 0.253 0.882 0.878 0.844 0.833 
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Recall 0.208 0.857 0.859 0.833 0.796 

F-score 0.220 0.859 0.871 0.838 0.818 

Integrated dataset 

Accuracy 0.996 0.999 0.999 0.999 0.999 

Log loss 0.0005 0.0025 0.0025 0.0001 0.00035 

Precision 0.986 0.999 0.999 0.999 0.999 

Recall 0.981 0.999 0.999 0.999 0.999 

F-score 0.985 0.999 0.999 0.999 0.999 

9. Ethical Considerations 

Privacy leakage raises serious ethical concerns, 

particularly regarding user consent, autonomy, data 

security, and potential misuse of sensitive information. 

As this study demonstrates that anonymized 

behavioral data can still be used to re-identify 

individuals, it is crucial to address the ethical 

implications of data collection, sharing, and analysis. 

9.1 User Consent And Transparency 

One of the fundamental ethical concerns in data 

privacy is the issue of informed consent. Users often 

remain unaware of how their behavioral data such as 

campus card transactions and smartphone usage 

patterns are collected, stored, and shared with third 

parties. Many institutions anonymize data before 

sharing, but as shown in this study, anonymization 

alone is insufficient to prevent re-identification. It is 

ethically imperative for institutions to inform users 

about how their data is collected and used. Obtain 

explicit consent before collecting behavioral data and 

provide opt-out mechanisms for users who do not wish 

to participate in data collection. 

9.2 Risk Of Re-Identification And Data Misuse 

Although anonymization techniques are designed to 

protect user identities, this study demonstrates that 

machine learning models can re-identify individuals 

with high accuracy based on behavioral patterns. This 

creates a risk of privacy breaches, which could lead to 

unauthorized tracking and profiling of individuals, 

Discrimination or bias in decision-making processes if 

sensitive behavioral data is misused and financial or 

reputational harm if personal data is exploited by 

malicious entities. To mitigate these risks, 

organizations handling behavioral data must enforce 

stronger privacy-preserving techniques, such as 

differential privacy, secure multi-party computation 

(SMPC), and federated learning, to ensure that re-

identification risks are minimized while preserving 

data utility. 

9.3 Ethical Responsibilities of Data Collectors and 

Third Parties 

Institutions and organizations collecting user data 

hold an ethical responsibility to ensure that third 

parties (such as researchers or data analysts) adhere to 

strict data governance policies. This includes: 

Implementing data access control measures to prevent 

unauthorized use, conducting regular privacy impact 

assessments to evaluate potential risks associated with 

data sharing and enforcing data retention policies to 

limit how long sensitive data is stored. 

9.4 Compliance with Legal and Ethical Standards 

Data privacy laws such as the General Data Protection 

Regulation (GDPR) and the Health Insurance 

Portability and Accountability Act (HIPAA) establish 

strict guidelines for data protection. However, the 

findings of this study suggest that even anonymized 

datasets pose risks, meaning compliance alone is not 

always sufficient. Ethical data handling requires 

proactive privacy measures beyond legal compliance. 

The institutes ensure that data collection aligns with 

fundamental human rights regarding privacy and 

autonomy and regular audits and policy updates to 

address emerging threats in data security. 

9.5 Balancing Data Utility and Privacy Protection 

While large-scale data analysis can provide valuable 

insights into student behavior, academic performance, 

and institutional decision-making, it must be balanced 

with strong privacy safeguards. Institutions should 

strive for a privacy-aware data-sharing model that 

integrates privacy-preserving machine learning 

techniques without compromising data utility. 

The ethical implications of privacy leakage from 

behavioral data go beyond technical concerns, 

touching on fundamental human rights and data 

protection ethics. Addressing these concerns requires 

transparent data collection policies, robust privacy-

preserving techniques, strict governance of third-party 

access, and adherence to evolving legal standards. By 

adopting ethical data practices, institutions can ensure 
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that advancements in behavioral analysis do not 

compromise individual privacy and security. 

10. Limitations and Future Work 

The limitations of this study primarily revolve around 

dataset constraints, privacy threat assumptions, and 

the scope of anonymization techniques applied. The 

dataset consists of 250 students, which limits its 

generalizability to larger and more diverse educational 

institutions. Future research should incorporate 

datasets from multiple universities or regions to 

validate the findings on a broader scale. Additionally, 

this study primarily focuses on passive privacy risks 

arising from data anonymization techniques but does 

not assess adversarial attacks such as model inversion 

or membership inference attacks. Evaluating these 

threats in future studies would provide a more 

comprehensive risk assessment of anonymized 

datasets. 

Another limitation of this study is the reliance on 

conventional anonymization techniques, such as 

removing personally identifiable information, without 

evaluating advanced privacy-preserving approaches 

like differential privacy, federated learning, or 

homomorphic encryption. Assessing these techniques 

in future research could help mitigate re-identification 

risks while maintaining data utility. Furthermore, the 

selected behavioral features used for identity 

prediction were optimized for accuracy, but potential 

biases in feature selection may impact real-world 

applications. A more systematic evaluation of feature 

biases should be conducted in future studies to ensure 

fairness and robustness. Finally, while this research 

highlights privacy risks, it does not fully explore the 

ethical and legal frameworks necessary for responsible 

data sharing, particularly concerning compliance with 

the General Data Protection Regulation (GDPR), 

Health Insurance Portability and Accountability Act 

(HIPAA), and other privacy regulations. A more 

detailed regulatory analysis should be incorporated to 

ensure ethical data handling. 

Future research should focus on expanding the 

dataset scope to analyze larger, multi-institutional 

datasets, thereby improving the generalizability of the 

findings. Incorporating attack models such as attribute 

inference, data reconstruction, and membership 

inference attacks would allow for a more in-depth 

examination of the vulnerabilities of anonymized 

datasets. Further studies should explore the 

implementation of advanced privacy-preserving 

techniques, including differential privacy, federated 

learning, and secure multi-party computation, to 

determine their effectiveness in preventing re-

identification risks. Additionally, investigating hybrid 

privacy models that combine anonymization with 

cryptographic techniques could help balance privacy 

protection and data usability. 

Developing policy and regulatory guidelines 

tailored to ethical data handling, particularly in 

crowdsourced educational data environments, should 

be prioritized in future studies. A structured 

framework could ensure that data collection and 

sharing practices align with privacy laws while 

minimizing risks to data subjects. Finally, future 

research should explore the practical implementation 

challenges of privacy-preserving methods, including 

computational overhead, scalability, and regulatory 

barriers, to facilitate their adoption in real-world 

applications. 

11. Conclusion 

The study highlights significant privacy risks 

associated with anonymized educational data, 

demonstrating that machine learning models can re-

identify individuals. The growing popularity of big 

educational data has elevated the intrinsic risk of 

leakage of sensitive information in terms of security 

threats. Data sharing has privacy issues, which need to 

be solved. The objective of the data collector is to 

release useful data to data miners without disclosing 

data providers' identities and sensitive information 

about them. To achieve this goal,  a proper privacy 

model must be developed to properly quantify the loss 

of privacy under different attacks. 

This research paper discusses only data 

anonymization, which is not sufficient to guarantee the 

privacy protection of a student. To prove that we 

compared online and offline user behavior patterns 

from a different perspective a method has been 

introduced for a person’s privacy leakage by 

integrating both online and offline card datasets. The 

results suggested that the data anonymization 

technique alone is not sufficient for big data 

processing. Making the security system easy and 

adaptable to each smart card holder requires strong 

privacy protection. The modern systems i.e., m-

commerce and campus card management store 

personal data with financial information. The ability to 

control what type of data to reveal and who can access 

it; is a growing concern currently in big data. 

The analysis of the data security and privacy 

concern is expected to have an integrative and 

comprehensive security solution to meet the 

requirement for the preservation of the user’s privacy. 
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For privacy protection, privacy data identification and 

isolation are the intrinsic tasks that should be 

considered during the sharing of anonymized data. 
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